فهرست مطالب

Molecular Biology Research Communications
Volume:3 Issue: 4, Dec 2014

  • تاریخ انتشار: 1393/10/01
  • تعداد عناوین: 5
|
  • BÉla A. Marosi, Karen M. Kiemnec-Tyburczy, Ioan V. Ghira, Tibor Sos, Octavian Popescu Pages 215-222
    Immune genes of the major histocompatibility complex (MHC) are among the most polymorphic genes in the vertebrate genome. Due to their polymorphic nature, they are often used to assess the adaptive genetic variability of natural populations. This study describes the first molecular characterization of 13 partial MHC class IIB sequences from three European ranid frogs. The utility of previously published primers was expanded by using them to successfully amplify eight exon 2 alleles from Rana arvalis. We also designed a novel primer set that successfully amplified exon 2 from Pelophylax kurtmuelleri. Pelophylax lessonae was also designed as part of this study. Results indicate the presence of one or two class IIB loci in these three species. In R. arvalis, significant evidence of positive selection acting on MHC antigen binding sites was found. Many European ranid populations are experiencing disease-related declines; the newly developed primers can, therefore, be used for further population analyses of native frogs.
    Keywords: Antigen Binding Site, Anura, Pelophylax, Rana, Ranidae
  • Shiva Ebrahimpour, Iraj Saadat Pages 223-229
    Oxidative stress is known to be one of the major factors involved in the development and progression of cancer. Oxidative stress can occur due to an imbalance between concentrations of reactive oxygen species and antioxidant capacities. Catalase (CAT; OMIM 115500) and superoxide dismutase 1 (SOD1; OMIM 147450) play important roles in the primary defense against oxidative stress. In the present study, we investigated possible associations between polymorphisms of CAT C-262T (rs1001179) and SOD1 A251G (rs2070424) with susceptibility to gastric cancer. This case-control study included 160 gastric cancer patients and 241 age and gender frequency-matched healthy controls. Genotyping was done using PCR-RFLP based method. There were no significant differences in T allele frequencies in patients as compared to the controls in the CAT C-262T polymorphism (OR=0.80, 95% CI: 0.52- 1.23, P=0.304). Subjects with AG (OR=0.47, 95% CI: 0.24-0.91, P=0.026) or AG+GG (OR=0.45, 95% CI: 0.23-0.88, P=0.021) genotypes of the rs2070424 polymorphism were at lower risks of developing gastric cancer in comparison with the AA genotype. Our findings showed that there was no significant association between CAT C-262T polymorphism and gastric cancer susceptibility. However, we found that the G allele of the SOD1 A251G polymorphism has protective effects against the risk of gastric cancer.
    Keywords: CAT, Gastric Cancer, Genetic Polymorphism, Oxidative stress, SOD1
  • Sandya Chinna Rajesh, Sayani Banerjee, Avijit Patra, Gadadhar Dash, Thangapalam Abraham Pages 231-239
    As new pathogenic strains are emerging and threatening aquaculture development, myxosporeans (Myxozoa) are receiving much attention in recent years. Myxosporean taxonomy is traditionally based on morphology of the myxospore stage. Molecular data on Indian myxosporeans are rare. In this report, the 18S rRNA gene sequence of Myxobolus cuttacki infecting gill lamellae of minor carp Labeo bata (Ham.) and its phylogenetic relationship with other myxobolids are described for the first time. The plasmodia of M. cuttacki were 0.5-0.9 mm in size and whitish with a round to oval shape. The mean mature spore size was 16.10×7.05 μm. The 18S rRNA nucleotide sequence with 1703 bp of M. cuttacki (accession number KF465682) clustered phylogenetically with other Myxobolus spp. infecting cyprinid gills with 78-90% homogeneity. The gill lamellae infecting M. catmrigalae (KC933944) and M. orissae (KF448527) of Indian major carp Cirrhinus mrigala from India, exhibited 86% and 81% homogeneity with M. cuttacki, respectively. The infection rate was low to moderate on the gills which can have a negative impact on respiratory and physiological functions and subsequently on fish production.
    Keywords: Labeo bata, Myxobolus cuttacki, 18S rRNA, Phylogenetic relationship
  • Bahlanes Bakhtari, Hooman Razi Pages 241-251
    The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signaling pathway in Arabidopsis. This study aimed to clone and sequence an ortholog of the Arabidopsis SRK2D gene from Brassica napus, designated as BnSRK2D. An 833bp cDNA fragment of BnSRK2D, which shared high amino acid sequence identity with its Arabidopsis counterpart, was obtained suggesting a possible conserved function for these genes. The expression pattern of BnSRK2D and its potential target gene B. napus ABF2 (BnABF2) were then analyzed in the two cultivars with contrasting reaction to water deficit stress. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) showed that BnSRK2D and BnABF2 were water-deficit stress responsive genes with similar expression profiles. The accumulation of the BnSRK2D and BnABF2 transcripts in the two cultivars was linked with their level of drought tolerance, as the drought tolerant cultivar had significantly higher expression levels of both genes under normal and water deficit stress conditions. These findings suggest that BnSRK2D and BnABF2 genes may be involved in conferring drought tolerance in B. napus.
    Keywords: Rapeseed, SnRK2, BnABF2, Drought tolerance, Transcript accumulation
  • Mohammad Reza Dayer, Mohammad Saaid Dayer Pages 253-267
    Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this study, molecular dynamic simulation method was used to examine the combinational and additive effects of all known mutations involved in drug resistance against FDA approved inhibitors. Results showed that drug resistant mutations are not randomly distributed along the protease sequence; instead, they are localized on flexible or hot points of the protein chain. Substitution of more hydrophobic residues in flexible points of protease chains tends to increase the folding, lower the flexibility and decrease the active site area of the protease. The reduced affinities of HIV-1 protease for inhibitors seemed to be due to substantial decrease in the size of the active site and flap mobility. A correlation was found between the binding energy of inhibitors and their affinities for each mutant suggesting the distortion of the active site geometry in drug resistance by preventing effective fitting of inhibitors into the enzymes'' active site. To overcome the problem of drug resistance of HIV-1 protease, designing inhibitors of variable functional groups and configurations is proposed.
    Keywords: HIV, 1 Protease, Inhibitors, AIDS Treatment, Drug Resistance