فهرست مطالب

Iranian Journal of Electrical and Electronic Engineering
Volume:10 Issue: 4, Dec 2014

  • تاریخ انتشار: 1393/10/11
  • تعداد عناوین: 10
|
  • D. Zarifi, M. Soleimani, A. Abdolali Pages 250-255
    In this paper, the propagation of electromagnetic waves through an infinite slab of uni- or bi- axial chiral medium is analytically formulated for an arbitrary incidence using 4×4 matrix method. In this powerful method, a state vector differential equation is extracted whose solution is given in terms of a transition matrix relating the tangential components of electric and magnetic fields at the input and output planes of the uni- or bi- axial chiral layer. The formulas of the reflection and transmission are then derived. Also, the presented method is verified by some typical examples and the results are compared with the results obtained by the other available methods.
    Keywords: Bianisotropic Media, Chiral Media, Reflection, Transmission
  • M. Geravanchizadeh, S. Ghalami Osgouei Pages 256-266
    This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS leads to better performance of adaptive filter. Furthermore, convex combination of two adaptive filters improves its performance. In this paper, new convex combinational adaptive filtering methods in the framework of speech enhancement system are proposed. The proposed methods utilize the idea of normalization and fractional derivative, both in the design of different convex mixing strategies and their related component filters. To assess our proposed methods, simulation results of different LMS-based algorithms based on their convergence behavior (i.e., MSE plots) and different objective and subjective criteria are compared. The objective and subjective evaluations include examining the results of SNR improvement, PESQ test, and listening tests for dual-channel speech enhancement. The powerful aspects of proposed methods are their low complexity, as expected with all LMS-based methods, along with a high convergence rate.
    Keywords: Adaptive Filters, Convex Combination of Adaptive Filters, Fractional Least, Mean, Squares, Least, Mean, Squares, Normalized Fractional Least, mean, squares, Speech Enhancement
  • B. Zakeri, H. Bernety Pages 267-275
    Band-notch characteristic has been of great interest recently to overcome the electromagnetic interference of Ultra-wideband systems (UWB) with other existing ones. In this paper, we present a novel microstrip-fed antenna with band rejection property appropriate for UWB applications. Band-notch characteristic has been achieved by adding a rectangular resonant element to the ground section. A prototype was fabricated and measured based upon optimal parameters. Experimental results show consistency with simulation results. Measurement results confirm that the antenna covers the UWB band and satisfies a band rejection in the frequency span of 5 GHz to 5.7 GHz to restrain it from interference with Wireless Local Area Network (WLAN). Then, to achieve better isolation, a rectangular strip is appended to the band-notch creating part of the ground section to enhance obtained VSWR up to 30 through simulation. In addition, by applying a similar technique, a dual band-notched characteristic with an average simulated VSWR of around 13.75 has been achieved for WLAN and the downlink of X band satellite communication systems with each more than 10. Features such as small size, omnidirectional pattern and perfect isolation make the antenna suitable for any UWB applications.
    Keywords: Band, Notch Characteristic, Radiation Pattern, Reflection Coefficient, Ultra, Wideband Antenna
  • S. K. Agrawal, O. P. Sahu Pages 276-282
    In this paper, a novel technique for the design of two-channel Quadrature Mirror Filter (QMF) banks with linear phase in frequency domain is presented. To satisfy the exact reconstruction condition of the filter bank, low-pass prototype filter response in pass-band, transition band and stop band is optimized using unconstrained indirect update optimization method. The objective function is formulated as a weighted sum of pass-band error and stop-band residual energy of low-pass prototype filter, and the square error of the distortion transfer function of the QMF bank at the quadrature frequency. The performance of the proposed algorithm is evaluated in terms of Peak Reconstruction Error (PRE), mean square error in pass-band and stop-band regions and stop-band edge attenuation. Design examples are included to illustrate the performance of the proposed algorithm and the quality of the filter banks that can be designed.
    Keywords: Nearly Perfect, Reconstruction, Optimization, Phase Distortion, Two, Channel Filter Banks
  • M. Esmaili, H. A. Shayanfar, K. Gharani Pages 283-292
    Phasor Measurement Units (PMUs) are in growing attention in recent power systems because of their paramount abilities in state estimation. PMUs are placed in existing power systems where there are already installed conventional measurements, which can be helpful if they are considered in PMU optimal placement. In this paper, a method is proposed for optimal placement of PMUs incorporating conventional measurements of zero injection buses and branch flow measurements using a permutation matrix. Furthermore, the effect of single branch outage and single PMU failure is included in the proposed method. When a branch with a flow measurement goes out, the network loses one observability path (the branch) and one conventional measurement (the flow measurement). The permutation matrix proposed here is able to model the outage of a branch equipped with a flow measurement or connected to a zero injection bus. Also, measurement redundancy, and consequently measurement reliability, is enhanced without increasing the number of PMUs; this implies a more efficient usage of PMUs than previous methods. The PMU placement problem is formulated as a mixed-integer linear programming that results in the global optimal solution. Results obtained from testing the proposed method on four well-known test systems in diverse situations confirm its efficiency.
    Keywords: Measurement Redundancy, Observability, Phasor Measurement Unit, Power Flow Measurement, Zero Injection Bus
  • Sh. Jadid, S. A. H. Bahreyni Pages 293-303
    Smart Grids are result of utilizing novel technologies such as distributed energy resources, and communication technologies in power system to compensate some of its defects. Various power resources provide some benefits for operation domain; however, power system operator should use a powerful methodology to manage them. Renewable resources and load add uncertainty to the problem. So, independent system operator should use a stochastic method to manage them. A Stochastic unit commitment is presented in this paper to schedule various power resources such as distributed generation units, conventional thermal generation units, wind and PV farms, and demand response resources. Demand response resources, interruptible loads, distributed generation units, and conventional thermal generation units are used to provide required reserve for compensating stochastic nature of various resources and loads. In the presented model, resources connected to distribution network can participate in wholesale market through aggregators. Moreover, a novel three-program model which can be used by aggregators is presented in this article. Loads and distributed generation can contract with aggregators by these programs. A three-bus test system and the IEEE RTS are used to illustrate usefulness of the presented model. The results show that ISO can manage the system effectively by using this model
    Keywords: Aggregator, Demand Response, Distributed Energy Resource, PV Farm, Stochastic Unit Commitment, Wind Farm
  • S. M. Mousavi Gazafroodi, A. Dashti Pages 304-313
    In this paper, a novel stator current based Model Reference Adaptive System (MRAS) estimator for speed estimation in the speed-sensorless vector controlled induction motor drives is presented. In the proposed MRAS estimator, measured stator current of the induction motor is considered as a reference model. The estimated stator current is produced in an adjustable model to compare with the measured stator current, where rotor flux identification is needed for stator current estimation. In the available stator current based MRAS estimator, rotor flux is estimated by the use of measured stator current, where the adjustable model and reference model depend on each other since measured stator current is employed in both of them. To improve the performance of the MRAS speed estimator, both the stator current and rotor flux are estimated in the adjustable model by using the state space equations of the induction motor, adjusted with the rotor speed calculated by an adaptation mechanism. The stability of the proposed MRAS estimator is studied through a small signal analysis. Senorless induction motor drive along with the proposed MRAS speed estimator is verified through computer simulations. In addition, performance of the proposed MRAS is compared with the available stator current based MRAS speed estimator
    Keywords: Induction Motor, Model Reference Adaptive System, Rotor Flux Identification, Speed Estimation
  • M. Hosseinabadi, H. Rastegar Pages 314-323
    This paper is concerned with behavior analysis and improvement of wind turbines with Doubly Fed Induction Generator (DFIG) when using a new fractional-order control strategy during wind variations. A doubly fed induction generator, two types of variable frequency power electronic converters and two input wind waveforms are considered. A fractional-order control strategy is proposed for the wind turbine control unit. Output parameters of the wind turbine are drawn by simulations using MATLAB/Simulink for both fractional-order and integer-order (classic) control systems and a complete comparison between these two strategies has been presented. Results show a better operation when using fractional-order control system.
    Keywords: Control Strategy, DFIG, Fractional, Order, Integer, Order, Wind Turbine
  • H. A. Lari, A. Kiyoumarsi, A. Darijani, B. Mirzaeian Dehkordi, S. M. Madani Pages 324-332
    In Permanent-Magnet Synchronous Generators (PMSGs) the reduction of cogging torque is one of the most important problems in their performance and evaluation. In this paper, at first, a direct-drive vertical-axis wind turbine is chosen. According to its nominal value operational point, necessary parameters for the generator is extracted. Due to an analytical method, four generators with different pole-slot combinations are designed. Average torque, torque ripple and cogging torque are evaluated based on finite element method. The combination with best performance is chosen and with the analysis of variation of effective parameters on cogging torque, and introducing a useful method, an improved design of the PMSG with lowest cogging torque and maximum average torque is obtained. The results show a proper performance and a correctness of the proposed method.
    Keywords: Cogging Torque, Finite Element Method, PMSG, Vertical, Axis Wind Turbine
  • H. Fallah Khoshkar, A. Doroudi, M. Mohebbi Pages 333-340
    This paper studies the effects of symmetrical voltage sags on the operational characteristics of a Permanent Magnet Synchronous Motor (PMSM) by Finite Element Method (FEM). Voltage sags may cause high torque pulsations which can damage the shaft or equipment connected to the motor. By recognizing the critical voltage sags, sags that produce hazardous torque variations could be prevented. Simulations results will be provided and the critical voltage sags are recognized. A simple theoretical analysis will also be presented to obtain a qualitative understanding of the phenomena occurring in PMSM during symmetrical voltage sags
    Keywords: Finite Element Method, Maxwell Software, Power Quality, Synchronous Motors, Torque Pulsations, Transient Analysis, Voltage Sag