The Application of Dose-Response Models to Determine the Median Effective Adsorbent Bone Char Dose to Remove Fluoride From Drinking Aqueous Solutions

Message:
Abstract:
Introduction
In studies of the adsorption of pollutants onto different adsorbents, determining the adsorbent dose of the most important characteristics must be considered. The aim of the study was the determination and modeling of dose-response bone char fluoride removal from aqueous solutions and comparison of the adsorption isotherm models with dose-response models from the perspective of adsorption.
Methods
In this experimental study, bone char was prepared by using an electric furnace at 450˚C in two hours. Sorting the adsorbent was conducted by standard sieve ASTM in the range of 18-35 meshes and its characteristics were determined with conventional methods. The concentration of fluoride was measured according to the recommendation of manufacturer (HACH) with Dr-5000 of regent fluoride. Dose-response models were fit to the data and parameters were estimated. Based on the quality of fitness indicators, the adsorption isotherm models were compared with dose-response models. Analysis of the data in this study was performed using the R software version 3.1.2 and stats package.
Results
Fit indexes (AIC and R2) showed that the most appropriate model for the data in pH= 10, concentration = 10 and pH = 7, concentration = 20 was the Emax model and in pH = 7, concentration = 10 and pH = 7, concentration = 15 the quadratic model. According to these models, the median of effective dose on bone char at removal of fluoride was determined 0.11 g in concentration of 10 mg/L and pH = 10. The maximum effective dose was determined 1.25 g in concentration of 20 mg/L and pH = 7. The index (AIC) showed that quadratic dose-response models better fit to adsorption data than adsorption isotherm models.
Conclusions
The median and maximum effective doses of bone char at removal of fluoride were estimated by statistical models more accurately. In addition, determining the goal dose was performed using modeling method, which was more economic than repeated testing, and the performance time was also more cost-effective. Quadratic dose-response model can be a good alternative for adsorption isotherm models in the adsorption behavior.
Language:
Persian
Published:
Avicenna Journal of Clinical Medicine, Volume:23 Issue: 3, 2016
Pages:
237 to 248
magiran.com/p1603726  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!