a. a. estaji
-
Let $mathcal{R}_c( L)$ be the pointfree version of $C_c(X)$, the subring of $C(X)$ whose elements have countable image. We shall call a frame $L $ a $CP$-frame if thering $mathcal{R}_c( L)$ is regular. % The main aim of this paper is to introduce $CP$-frames, that is $mathcal{R}_c( L)$ is a regular ring. We give some We give some characterizations of $CP$-frames and we show that $L$ is a $CP$-frame if and only if each prime ideal of $mathcal{R}_c ( L)$ is an intersection of maximal ideals if and only if every ideal of $mathcal{R}_c ( L)$ is a $z_c$-ideal. In particular, we prove that any $P$-frame is a $CP$-frame but not conversely, in general. In addition, we study some results about $CP$-frames like the relation between a $CP$-frame $L$ and ideals of closed quotients of $L$. Next, we characterize $CP$-frames as precisely those $L$ for which every prime ideal in the ring $mathcal{R}_c ( L)$ is a $z_c$-ideal. Finally, we show that this characterization still holds if prime ideals are replaced by essential ideals, radical ideals, convex ideals, or absolutely convex ideals.Keywords: P-frame, CP-frame, regular ring, z-ideal, z-good ring
-
In this article we consider the $m$-topology on linebreak $M(X,mathscr{A})$, the ring of all real measurable functions on a measurable space $(X, mathscr{A})$, and we denote it by $M_m(X,mathscr{A})$. We show that $M_m(X,mathscr{A})$ is a Hausdorff regular topological ring, moreover we prove that if $(X, mathscr{A})$ is a $T$-measurable space and $X$ is a finite set with $|X|=n$, then $M_m(X,mathscr{A})cong mathbb R^n$ as topological rings. Also, we show that $M_m(X,mathscr{A})$ is never a pseudocompact space and it is also never a countably compact space. We prove that $(X,mathscr{A})$ is a pseudocompact measurable space, if and only if $ {M}_{m}(X,mathscr{A})= {M}_{u}(X,mathscr{A})$, if and only if $ M_m(X,mathscr{A}) $ is a first countable topological space, if and only if $M_m(X,mathscr{A})$ is a connected space, if and only if $M_m(X,mathscr{A})$ is a locally connected space, if and only if $M^*(X,mathscr{A})$ is a connected subset of $M_m(X,mathscr{A})$.
Keywords: m-topology, measurable space, pseudocompact measurable space, connected space, first countable topological space -
It is well-known that the sum of two $z$-ideals in $C(X)$ is either $C(X)$ or a $z$-ideal. The main aim of this paper is to study the sum of strongly $z$-ideals in ${mathcal{R}} L$, the ring of real-valued continuous functions on a frame $L$. For every ideal $I$ in ${mathcal{R}} L$, we introduce the biggest strongly $z$-ideal included in $I$ and the smallest strongly $z$-ideal containing $I$, denoted by $I^{sz}$ and $I_{sz}$, respectively. We study some properties of $I^{sz}$ and $I_{sz}$. Also, it is observed that the sum of any family of minimal prime ideals in the ring ${mathcal{R}} L$ is either ${mathcal{R}} L$ or a prime strongly $z$-ideal in ${mathcal{R}} L$. In particular, we show that the sum of two prime ideals in ${mathcal{R}} L$ such that are not a chain, is a prime strongly $z$-ideal.the formula is not displayed correctly!
Keywords: Frame, Ring of real-valued continuous functions, z-Ideal, Strongly z-ideal
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.