a. r. ashrafi
-
The commuting graph of a finite group GG, C(G)C(G), is a simple graph with vertex set GG in which two vertices xx and yy are adjacent if and only if xy=yxxy=yx. The aim of this paper is to compute the distance Laplacian spectrum and the distance Laplacian energy of the commuting graph of CACA-groups.
Keywords: Distance matrix, commuting graph, distance Laplacian spectrum -
The number of subgroups, normal subgroups and characteristic subgroups of a finite group G are denoted by Sub(G), NSub(G) and CSub(G), respectively. The main goal of this paper is to present a matrix model for computing these positive integers for dicyclic groups, semi-dihedral groups, and three sequences U6n, V8n and H(n) of groups that can be presented as follows: U6n = ⟨a, b | a 2n = b 3 = e, bab = a⟩, V8n = ⟨a, b | a 2n = b 4 = e, aba = b −1 , ab−1a = b⟩, H(n) = ⟨a, b, c | a 2 n−2 = b 2 = c 2 = e, [a, b] = [b, c] = e, ac = ab⟩. For each group, a matrix model containing all information is given.
Keywords: Subgroup, Normal subgroup, Characteristic subgroup -
Journal of Algebraic Structures and Their Applications, Volume:7 Issue: 2, winter-spring 2020, PP 135 -145
Suppose that G is a finite non-abelian group. Define the graph Γ(G) with the non-central conjugacy classes of G as vertex set and two distinct vertices A and B are adjacent if and only if there are x∈A and y∈B such that xy=yx. The graph Γ(G) is called the commuting conjugacy class graph of G and introduced by Mohammadian et al. in [A. Mohammadian, A. Erfanian, M. Farrokhi D. G. and B. Wilkens, Triangle-free commuting conjugacy class graphs, {J. Group Theory} {19} (3) (2016) 1049--1061]. In this paper, the graph structure of the commuting conjugacy class graph of nilpotent groups of order n are obtained in which n is not divisible by p5, for every prime factor p of n.
Keywords: Commuting conjugacy class graph, nilpotent group, p−group
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.