ali mohammed hashesh
-
Although theoretical models of manufacturing processes are useful for understanding physical events, it can be challenging to apply them in real-world industrial settings. When huge data are accessible, artificial intelligence approaches in the context of Industry 4.0 can offer effective answers to real production challenges. Deep learning is increasingly being used in the realm of artificial intelligence to address a variety of issues relating to information and communication technology, but it is still limited or perhaps nonexistent in the industrial sector. In this study, wire electrical discharge machining—a sophisticated machining technique primarily used for computer hardware components—is applied to effectively forecast unforeseen occurrences. By identifying hidden patterns in process signals, anomalies, such as changes in the thickness of a machined item, may be efficiently anticipated before they occur. In this study, a model for anomaly detection in the sequence of thickness change in the machined component based on transformers is suggested. Our method is able to achieve 94.32 % and 94.16 % accuracy in Z 135 and Z 15 datasets, respectively. Also, it forecasts the abnormalities inside the sequence 1.1 seconds in advance, according to our tests on a dataset that has been introduced.
Keywords: Transformers, Wire Electrical Discharge, Anomaly Detection
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.