b. patel
-
Structure health monitoring is still a challenging issue despite continuous research efforts since a long time. Modeshape changes are a remarkable symptom of the damaged element location in structural system identification. In this paper, various mode shape based prediction techniques are applied to a common structural model. A cantilever beam model is formulated using the distributed mass and stiffness matrix based finite element modelling. Multiple damages are introduced in the above cantilever beam even with two, three and four member damage combinations. The results does not provide a concrete solution on the damage element location prediction. Further, in the computational part, the distributed computing technique using element-to-element matrix multiplications is applied. The Roving technique is also applied, which acts as a counter for self-automation. The proposed approach provides a better damage element location prediction even for the multiple damaged member combinations. The roving technique means an element scanning technique, which works with a computer clock speed. The novelty of the approach is that the method is simple and it could be applied to other structures. While scanning as automation no element is left out. Another beauty of the method is that no prior damage elements are assumed as many statistical based approaches assumed in prior. This approach could be a better way to the automation process, for the system identification and machine learning tools.
Keywords: Machine Learning, Automation, Structural Health Monitoring, Distributed Computing Technique, Dynamic Response, Inverse System Identification -
The identification of structural systems with unknown vibration signature response is still a challenging issue which has been addressed by many reviewers. The current sensor technology states that the sensor position should be very close to the damaged element in order to identify and localize the damage. The primary goal of this research is to present a baseline-free method using the roving mode shape response based, multiple damage localization in a cantilever beam. Consequently, the damage location indicator is based on the roving mode shape approach (DLRA). The theoretical development is carried out on a cantilever beam, a finite element model. The different cases for multiple damages i.e. 2 elements damage, 3 elements damage and 5 elements to be damage, at a time, have been modelled on the structural member. The system response, for the healthy and damaged structural systems, has been determined using the roving mode shape approach. Further, the algorithm has been developed for multiple damage identification and localization using MATLAB software. The combined mass and stiffness damage, as well as only the mass change damage, both cases were considered. From the results, it was found that the proposed method can reliably identify the damage and its position. The method will also be helpful while keeping the sensor’s position very close to the damage. The novelty of this method is that it uses the response which is basically a field output and no prior assumptions have been made at the damaged element's location.
Keywords: Damage Detection, Structural Health Monitoring, Dynamic Response, Inverse System Identification -
The way a wave behaves, while propagating across a medium, varies with the wave type and the medium. So, knowledge of the behaviour of a wave in a system with a different form of damage, and behaviour of different types of waves in a particular system is an essential prerequisite for almost all activities in structural system identification and mainly for damage detection and localization of damage. This paper presents a comparative study of various wave propagations, that has been done by researchers in various structural systems. Further, a numerical model of an isotropic plate using finite element is created both with and without damage. The behaviour of waves has been studied. Finally, the comparative result is shown. This paper offers a new perspective for ongoing research by providing the most recent developments, difficulties, and prospects of wave propagation behaviours for damage detection and localization in the commonly used structural systems and structural elements. While propagating through different structural systems and components, the most used waves, which are (a) Shear wave, (b) Rayleigh wave, (c) Ultrasonic wave and (d) Lamb wave, have been thoroughly investigated. Along with several difficult problems for future growth, the summarized observations are provided.Keywords: Damage detection, Localization, Plate, Behaviour
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.