به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

batool rafiee

  • Batool Rafiee, Davood Shishehbori *, Hassan Hosseini Nasab
    Industrial plants are subjected to very dangerous events. Therefore, it is very essential to carry out an efficient risk and safety analysis. In classical applications, risk analysis treats event probabilities as certain data, while there is much penurious knowledge and uncertainty in generic failure data that will lead to biased and inconsistent alternative estimates. Then, in order to achieve a better fitting with systems condition, uncertainty needs to be considered. One of the most usual analytical methods that have been widely applied in the field of risk analysis is the technic of failure mode and effects analysis (FMEA). The usage of this method is in identifying and abolishing the multiple failure modes in various phases of system, from the product design to production of the industries system operation. To solve the shortcomings in the traditional FMEA method, we propose an innovative approach consisted of Dempster Shafer evidence theory (DST) and FMEA to provide a more efficient way for failure mode identification and prioritization. The proposed methodology in this study can well capture imprecise opinions and can prioritize failure modes considering uncertainties. City Gate Station (CGS) of Yazd Province was used to prove the practical application and validity of the proposed risk analysis methodology. Results showed that the proposed method is effective and practical for real engineering purposes.
    Keywords: Risk Analysis, Failure mode, effect analysis (FMEA), Uncertainty, Dempster Shafer evidence theory (DST), City Gate Station (CGS)
  • Batool Rafiee, Davood Shishehbori *, Hassan Hosseini Nasab
    Industrial plants are subjected to very dangerous events. Therefore, it is very essential to carry out an efficient risk and safety analysis. In classical applications, risk analysis treats event probabilities as certain data, while there is much penurious knowledge and uncertainty in generic failure data that will lead to biased and inconsistent alternative estimates. Then, in order to achieve a better fitting with systems condition, uncertainty needs to be considered. One of the most usual analytical methods that have been widely applied in the field of risk analysis is the technic of failure mode and effects analysis (FMEA). The usage of this method is in identifying and abolishing the multiple failure modes in various phases of system, from the product design to production of the industries system operation. To solve the shortcomings in the traditional FMEA method, we propose an innovative approach consisted of Dempster Shafer evidence theory (DST) and FMEA to provide a more efficient way for failure mode identification and prioritization. The proposed methodology in this study can well capture imprecise opinions and can prioritize failure modes considering uncertainties. City Gate Station (CGS) of Yazd Province was used to prove the practical application and validity of the proposed risk analysis methodology. Results showed that the proposed method is effective and practical for real engineering purposes.
    Keywords: Risk Analysis, Failure mode, effect analysis (FMEA), Uncertainty, Dempster Shafer evidence theory (DST), City Gate Station (CGS)
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال