فهرست مطالب نویسنده:
d. bakhshesh
-
Scientia Iranica, Volume:30 Issue: 6, Nov-Dec 2023, PP 2116 -2123For $0<\gamma<180^{\circ}$, a geometric path $P=(p_1,\ldots, p_n)$ is called angle-monotone with width $\gamma$ from $p_1$ to $p_n$ if there exists a closed wedge of angle $\gamma$ such that every directed edge $\overrightarrow{p_ip_{i+1}}$ of~$P$ lies inside the wedge whose apex is $p_i$. A geometric graph $G$ is called angle-monotone with width $\gamma$ if for any two vertices $p$ and $q$ in $G$, there exists an angle-monotone path with width $\gamma$ from $p$ to $q$. In this paper, we show that for any integer $k\geq 1$ and any $i\in\{2, 3, 4, 5\}$, the theta-graph $\Theta_{4k+i}$ on a set of points in convex position is angle-monotone with width $90^\circ+\frac{i\theta}{4}$, where $\theta=\frac{360^{\circ}}{4k+i}$. Moreover, we present two sets of points in the plane, one in convex position and the other in non-convex position, to show that for every $0<\gamma<180^\circ$, the graph $\Theta_4$ is not angle-monotone with width $\gamma$.Keywords: Angle-monotone path, Theta-graph, Stretch factor, Convex position
-
Scientia Iranica, Volume:29 Issue: 6, Nov-Dec 2022, PP 3244 -3248One of the most popular graphs in computational geometry is Yao graphs, denoted by $Y_k$, For every point set $S$ in the plane and an integer $k\geq 2$, the Yao graph $Y_k$ is constructed as follows. Around each point $p\in S$, the plane is partitioned into $k$ regular cones with the apex at $p$. The set of all these cones is denoted by ${\cal C}_p$. Then, for each cone $C\in {\cal C}_p$, an edge $(p,r)$ is added to $Y_k$, where $r$ is a closest point in $C$ to $p$. In this paper, we provide a lower bound of 3.8285 for the stretch factor of $Y_4$. This partially solves an open problem posed by Barba et al. (L.~Barba et al., New and improved spanning ratios for Yao graphs. Journal of computational geometry}, 6(2):19--53, 2015).Keywords: $t$-spanner, Yao graph, Theta-graph, Lower bound
-
Scientia Iranica, Volume:28 Issue: 6, Nov-Dec 2021, PP 3324 -3331Let $S$ be a set of $n$ points in the plane that is in convex position. In this paper, using the well-known path-greedy spanner algorithm, we present an algorithm that constructs a plane $frac{3+4pi}{3}$-spanner $G$ of degree 3 on the point set $S$. Recently, Biniaz et al. ({it Towards plane spanners of degree 3, Journal of Computational Geometry, 8 (1), 2017}) have proposed an algorithm that constructs a degree 3 plane $frac{3+4pi}{3}$-spanner $G'$ for $S$. We show that there is no upper bound with a constant factor on the total weight of $G'$, but the total weight of $G$ is asymptotically equal to the total weight of the minimum spanning tree of $S$.Keywords: Plane spanner, Stretch factor, greedy spanner, Computational geometry
بدانید!
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.