به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

gh. r. vossughi

  • Soroush Sadeghnejad, Nahid Elyasi, Farzam Farahmand *, Gh. R. Vossughi, S. Mousa Sadr Hosseini
    The aim of this research was to provide a simple yet realistic model of the sino-nasal tissue as a major requirement for developing more efficient endoscopic neurosurgery simulation systems. Ex-vivo indention tests were performed on the orbital floor soft tissue of four sheep specimens. The resulting force-displacement data was incorporated into an inverse finite element model to obtain the hyperelastic mechanical properties of the tissue. Material characterization was performed for Polynomial, Yeoh, Mooney-Rivlin and Neo-Hookean hyperelastic models, using a Sequential Quadratic Programming algorithm. Experimental results indicated a relatively large elastic deformation, up to 6mm, during indentation test with a considerable nonlinearity in the force-displacement response. All hyperelastic models could satisfy the convergence criteria of the optimization procedure, with the highest convergence rate and a close fittings accuracy associated with the Yeoh hyperelastic model. The initial guess of the material constants was found to affect the number of iterations before converging, but not the optimization results. The normalized mean square errors of fitting between the model and experimental curves were obtained as 2.39%, 4.26% and 4.65% for three sheep samples, suggesting that the Yeoh model can adequately describe the typical hyperelastic mechanical behavior of the sino-nasal tissue for surgery simulation.
    Keywords: Endoscopic Sinus, Skull base Surgery, Surgical Simulation System, Inverse Finite Element Method, SQP algorithm
  • Reza Sheikhbahaei, Gh. R. Vossughi, Aria Alasty *
    In this study, a real-time flexible modular modeling approach for the simulation of gas turbine engines dynamic behavior based on nonlinear thermodynamic and dynamic laws is addressed. The introduced model, which is developed in Matlab-Simulink environment, is an object-oriented high speed real-time computer model and is capable of simulating the dynamic behavior of a broad group of gas turbine engines due to its modular structure. Moreover, a Kalman filter-based model tuning procedure is applied to decrease the modeling errors. Modeling errors are defined as the mismatch between simulation results and available experimental data. This tuning procedure is an underdetermined estimation problem, where there are more tuning parameters than available measured data. Here, an innovative approach to produce a tuning parameter vector is introduced. This approach is based on seeking an optimal initial value for the Kalman filter tuning procedure. Three simulation studies are carried out in this paper to demonstrate the advantages, capabilities and performance of the proposed scheme. Furthermore, simulation results are compared with manufacturer’s published data, and with the experimental results gathered in either turbo-generator or turbo-compressor applications. Computational time requirement of the model is discussed at the end of the paper.
    Keywords: Gas Turbine, Dynamic Modeling, Modular Modeling, Model Tuning, Optimal Tuner Selection, Underdetermined Estimation, Kalman Filter
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال