i. singh
-
As two-dimensional coupled system of nonlinear partial differential equations does not give enough smooth solutions, when approximated by linear, quadratic and cubic polynomials and gives poor convergence or no convergence. In such cases, approximation by zero degree polynomials like Haar wavelets (continuous functions with finite jumps) are most suitable and reliable. Therefore, modified numerical method based on Taylor series expansion and Haar wavelets is presented for solving coupled system of nonlinear partial differential equations. Efficiency and accuracy of the proposed method is depicted by comparing with classical methods.
Keywords: Haar wavelet, Taylor series, Collocation points, Nonlinear coupled evolution equations, Operational matrices -
We present here, three- dimensional Haar wavelet based method for solving well known two- dimensional telegraph equation, by approximating higher order mixed derivatives by a series of higher dimensional Haar wavelet functions, which are integrated subsequently to get wavelet approximation of the solution. Numerical examples have been solved to illustrate the accuracy and efficiency of the proposed Haar wavelet method. High accuracy of the results even in the case of a small number of collocation points have been observed.
Keywords: Two- dimensional telegraph equation, Haar wavelet, Function approximations, Error analysis
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.