javad alidousti
-
In the present study, we analyze dynamics and bifurcations of a discrete-time Hopfield neural network based on two neurons and the same time delay. We determine stability and bifurcations of the system consisting flip, pitchfork and Neimark-Sacker bifurcations. The normal form coefficients for the all bifurcations are calculated using reducing to the corresponding center manifold, then these coefficients are numerically obtained using MatContM. Numerical analysis validates our analytical results and reveals more complex dynamical behaviors.Keywords: Delay System, Stability, Normal Form, Pitchfork Bifurcation, Flip Bifurcation, Neimark-Sacker Bifurcation
-
در این مقاله رفتار دینامیکی یک سیستم شکار و شکارچی گسسته را بررسی می کنیم. ابتدا شرایط لازم و کافی وجود نقاط ثابت از این مدل را بررسی می کنیم. سپس تمامی انشعابات ممکن از هم بعد یک مانند انشعاب تبادل پایداری، فلیپ و نایمارک-ساکر را به کمک نظریه ی منیفلد مرکز و فرم نرمال بررسی می کنیم. در ادامه کلیه ی انشعاب های هم بعد دو از این مدل مانند انشعاب رزونانس های قوی $1:2$ ، $1:3$ و $ 1:4 $ را بررسی خواهیم کرد. شبیه سازی عددی و روش امتداد عددی نه تنها نتایج تحلیلی ما را تایید می کند بلکه رفتار مدل را در تکرار های بالاتر مانند تکرار های چهارم و هشتم را آشکار می سازد. رفتارهای تناوبی, شبه تناوبی, آشوبی, هم زیستی جاذبه های آشوبی و... از این مدل در این شبیه سازی نمایان می شود که نشان دهنده ی رفتار غنی مدل است.
کلید واژگان: فلیپ، تبادل پایداری، نایمارک-ساکر، رزونانس، پایداری، مدل شکار و شکارچیThis paper studies the dynamical behavior of a discrete-time predator-prey analytically and numerically. The conditions and the critical coefficients for the transcritical, flip (period-doubling), and Neimark-Sacker are computed by using the center manifold and normal form technique. Besides, codimension-two bifurcations including strong resonances 1:2, 1:3, and 1:4 have been achieved. The numerical simulation and continuation method, not only confirm our analytical results but also reveals richer dynamics of the model, especially in the higher iteration.
Keywords: Flip, transcritical, Neimark -Sacker, Resonance, Stability, Predator-prey model -
In this paper, the local stability of the endemic equilibrium and existence of a Hopf bifurcation in a Susceptible-ExposedInfected-Recovered (SEIR) delayed mathematical model for COVID-19 pandemic are investigated. By using time-delay as a bifurcationparameter, the associated characteristic equation is analyzed to reveal dynamics of the model. Finally, numerical simulations areperformed with suitable parameters choice to illustrate the theoretical results of the model.
Keywords: COVID-19 Epidemic Model, Time-Delay, Stability, Hopf Bifurcation, SEIR Model -
In this paper, we study the effect of delayed feedback on the dynamics of a three-dimensional chaotic dynamical system and stabilize its chaotic behavior and control the respective unstable steady state. We derive an explicit formula in which a Hopf bifurcation occurs under some analytical conditions. Then the existence and stability of the Hopf bifurcation are analyzed by considering the time delay $ \tau $ as a bifurcation parameter. Furthermore, by numerical calculation and appropriate ascertaining of both the feedback strength $ K $ and time delay $ \tau $, we find certain threshold values of time delay at which an unstable equilibrium of the considered system is successfully controlled. Finally, we use numerical simulations to examine the derived analytical results and reveal more dynamical behaviors of the system.
Keywords: Chaotic system, Chaos control, Time-delayed feedback, Stability, Hopf bifurcatio -
The present study aims are to analyze a delay tumor-immune fractional-order system to describe the rivalry among the immune system and tumor cells. Given that the dynamics of this system depend on the time delay parameter, we examine the impact of time delay on this system to attain better compatibility with actuality. For this purpose, we analytically evaluated the stability of the system’s equilibrium points. It is shown that Hopf bifurcation occurs in the fractional system when the delay parameter passes a certain value. Finally, by using numerical simulations, the analytical results were compared to the numerical results to acquire several dynamical behaviors of this system.Keywords: Fractional differential equations, time delay, Stability analysis, Hopf Bifurcation
-
In this paper, we introduce fractional order of a planar fractional prey-predator system with a nonmonotonic functional response and anti-predator behaviour such that the adult preys can attack vulnerable predators. We analyze the existence and stability of all possible equilibria. Numerical simulations reveal that anti-predator behaviour not only makes the coexistence of the prey and predator populations less likely, but also damps the predator-prey oscillations. Therefore, antipredator behaviour helps the prey population to resist predator aggression.Keywords: Bifurcation, Fractional Prey-predator model, Stability of equilibrium, Dynamical behavior, Limit cycle
-
In this paper, we study stability of fractional-order nonlinear dynamic systems by means of Lyapunov method. To examine the obtained results, we employe the developed techniques on test examples.Keywords: Stability, Riemann-Liouville derivative, Caputo derivative, Lyapunov method
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.