به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

javad damirchi

  • Elham Mashayekhi, Javad Damirchi, Ahmad Yazdanian *
    The standard model, which determines option pricing, is the well-known Black-Scholes formula. Heston in addition to Cox-Ingersoll-Ross which is called CIR, respectively, implemented the models of stochastic volatility and interest rate to the standard option pricing model. The cost of transaction, which the Black-Scholes method overlooked, is another crucial consideration that must be made when trading a service or production. It is acknowledged that by employing the log-normal stock diffusion hypothesis with constant volatility, the Black-Scholes model for option pricing departs from reality. The standard log-normal stock price distribution used in the Black-Scholes model is insufficient to account for the leaps that regularly emerge in the discontinuous swings of stock prices. A jump-diffusion model, which combines a jump process and a diffusion process is a type of mixed model in the Black-Scholes model belief. Merton developed a jump model as a modification of jump models to better describe purchasing and selling behavior. In this study, the Heston-Cox-Ingersoll-Ross (HCIR) model with transaction costs is solved using the alternating direction implicit (ADI) approach and the Monte Carlo simulation assuming the underlying asset adheres to the jump-diffusion case, then the outcomes are compared to the analytical solution. In addition, the consistency of the numerical method is proven for the model.
    Keywords: Option Pricing, Stochastic Volatility, Stochastic Interest Rate, Cost Of Transaction, Alternating Direction Implicit Approach, Jump-Diffusion Process
  • Javad Damirchi *, Taher Rahimi Shamami
    In this research paper, a numerical method for one- and two- dimensional heat equation with nonlinear diffusion conductivity and source terms is proposed. In this work, the numerical technique is based on the polynomial differential quadrature method for discretization of the spatial domain. The resulting nonlinear system time depending ordinary differential equations is discretized by using the second order Runge–Kutta methods. The Chebyshev-Gauss-Lobatto points in this paper are used for collocation points in spatial discretization. We study accuracy in terms of L_∞ error norm and maximum absolute error along time levels. Finally, several test examples demonstrate the accuracy and efficiency of the proposed schemes. It is shown that the numerical schemes give better solutions. Moreover, the schemes can be easily applied to a wide class of higher dimension nonlinear diffusion equations.
    Keywords: Polynomial Differential Quadrature Method, Nonlinear Heat Equations, Runge-Kutta Method
  • Javad Damirchi*, Ali Janmohammadi, Masoud Hasanpour, Reza Memarbashi

    ‎The inverse problem considered in this paper is devoted to reconstruction of the unknown source term in parabolic equation from additional information which is given by measurements at final time‎. ‎The cost functional is introduced and existence of the minimizer for this functional is established‎. ‎The numerical algorithm to solve the inverse problem is based on the Ritz-Galerkin method with shifted Legendre polynomials as basis functions‎. ‎Finally‎, ‎some numerical results are presented to demonstrate the accuracy and efficiency of the proposed method for test example‎.

    Keywords: Inverse source Problem, Cost Functional, Ill-Posed Problem, Regularization Method, Ritz-Galerkin Method
  • Afshin Babaei*, Seddigheh Banihashemi, Javad Damirchi

    ‎In this paper‎, ‎an inverse problem of determining an unknown reaction coefficient in a one-dimensional time-fractional reaction-diffusion equation is considered‎. ‎This inverse problem is generally ill-posed‎. ‎For this reason‎, ‎the mollification regularization technique with the generalized cross-validation criteria will be employed to find an equivalent stable problem‎. ‎Afterward‎, ‎a finite difference marching scheme is introduced to solve this regularized problem‎. ‎The stability and convergence of the numerical solution are investigated‎. ‎In the end‎, ‎some numerical examples are presented to verify the ability and effectiveness of the proposed algorithm‎.

    Keywords: Inverse problem, Time fractional reaction-diffusion equation, Caputo’s fractionalderivative, Mollification, Marching scheme
  • جواد دمیرچی *، علی جانمحمدی، مسعود حسن پور، رضا معمار باشی
    ددر این مقاله یک روش عددی برپایه روش جواب بنیادی برای حل برخی مسائل مستقیم و معکوس هدایت گرمایی دوبعدی به کار گرفته می شود. براساس جواب بنیادی معادله گرما و خواص نظری جوابهای بنیادی شامل استقلال خطی و چگال بودن، با جایگذاری مناسب نقاط منبعی، روش جواب بنیادی برای حل برخی مسائل هدایت گرمایی دوبعدی معرفی می شود. سیستم خطی بدست آمده از روش فوق برای مسائل مستقیم و معکوس، یک سیستم خطی بد حالت بوده و لذا از یک روند منظم سازی به نام منظم سازی تیخونوف با معیار منحنی ال برای یافتن پارامتر منظم ساز، برای بدست آوردن یک جواب عددی پایدار استفاده می شود. نتایج عددی نشان دهنده کارایی و دقت روش مورد نظر می باشند.
    کلید واژگان: مسائل هدایت گرمایی دوبعدی‏، مسائل مستقیم و معکوس‏، روش جواب بنیادی، منظم ‎‎‎سازی تیخونف
    Javad Damirchi *, Ali Janmohammadi, Masoud Hasanpour, Reza Memarbashi
    In this paper, a numerical method based on the method of fundamental solutions (MFS) is employed for solving some two dimensional direct and inverse heat conduction problems. Based on the fundamental solution to the heat equation and theoretical properties of these solutions, including linear independence and denseness, wih suitbale placement of source points, the MFS is introduced for solving two dimensional heat conduction problems. Since the resultant matrix of the MFS is ill-conditioned for solving direct and inverse problems, to regularize this matrix equation, we apply Tikhonov regularization technique, while the choice of the regularization parameter is based on L-curve critera to obtain a stable solution. Numerical results show the effectiveness and ability of the proposed method.
    Keywords: Two Dimensional Heat Conduction Problems, Direct, Inverse Problems, Method of Fundamental Solutions, Tikhonov Regularization Method
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال