به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

ladan ebadi

  • Hoda Yazdanparast*, Seyyed Reza Mousavi, Ladan Ebadi, Salar Mirzapour

    A land cover map stands as a cornerstone of urban planning endeavors, furnishing indispensable insights into the landscape's composition and distribution. However, traditional methodologies for map creation and maintenance often entail significant temporal and financial investments. Embracing deep-learning-based approaches presents a promising avenue for revolutionizing aerial map generation, offering efficiencies hitherto unattainable. This research endeavors to harness the power of neural networks rooted in deep learning to craft a comprehensive land cover map. Focusing on Shiraz city, this study endeavors to delineate urban land uses into four distinct categories: Almond, Pistachio, Bare soil, and Shadow of trees. Leveraging imagery captured by a Phantom DJI 4 drone, the research scrutinizes ground features to facilitate accurate classification. The adoption of convolutional neural networks (CNN) emerges as a pivotal component of the methodology, serving as the bedrock for the automated classification process. Preliminary findings underscore the efficacy of the CNN approach, yielding an impressive overall accuracy rate of approximately 86.56%. Such results not only underscore the viability of deep-learning-based methodologies in land cover mapping but also underscore the potential for scalability and applicability across diverse urban landscapes. By mitigating the resource-intensive nature of traditional mapping techniques, this study paves the way for more agile and cost-effective urban planning endeavors, poised to accommodate the dynamic nature of modern cities.

    Keywords: Deep Learning, Land Cover, CNN, UAV Image, Classification
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال