m. mokhtarzade
-
Accurate land cover classification from the digital surface model (DSM) obtained from LiDAR sensors is a challenging topic that researchers have considered in recent years. In general, the classification accuracy of land covers leads to low accuracy using a single-band DSM image. Hence, it seems necessary to develop efficient methods to extract relevant spatial information, which improves classification accuracy. In this regard, using spatial features based on morphological profiles (MPs) has significantly increased classification accuracy. Despite MPs' efficiency in increasing the DSM's classification accuracy, the classification accuracy results under the situation of limited training samples are not still at satisfactory levels. The main novelty of this paper is to propose a new feature space based on local kernel descriptors obtained from MP for addressing the mentioned challenge of MP-based DSM classification. These innovative feature vectors consider local nonlinear dependencies and higher-order statistics between the morphological features. The experiments of this study are conducted on two well-known DSM datasets of Houston and Trento. Our results show that support vector machine (SVM)-based DSM classification with the new local kernel features achieved an average accuracy of 93.75%, which is much better than conventional SVM classification with single-band DSM and MP features (by about 57% and 11.5% on average, respectively). Additionally, our proposed method outperformed two other DSM classification methods by an average of 4.7%.
Keywords: LiDAR, Digital Surface Model, Morphological Profiles, Local Kernel Features, Support Vector Machine -
Face recognition (FR) is a challenging computer vision task due to various adverse conditions. Local features play an important role in increasing the recognition rate of an FR method. In this direction, the covariance descriptors of Gabor wavelet features have been one of the most prominent methods for accurate FR. Most existing methods rely on covariance descriptors of Gabor magnitude features extracted from single-scale face images. This study proposes a new method named multiscale Gabor covariance-based ensemble Log-euclidean SVM (MGcov-ELSVM) for FR that uses the covariance descriptors of Gabor magnitude and phase features derived from multiscale face representations. MGcov-ELSVM begins by producing multiscale face representations. Gabor magnitude and phase features are derived from the multiscale face images in the second stage. After that, the Gabor magnitude and phase features are used to generate covariance descriptors. Finally, Covariance descriptors are classified via a log-Euclidean SVM classifier, and a majority voting technique determines the final recognition results. The experimental results from two face databases, ORL and Yale, indicate that the MGcov-ELSVM outperforms some recent FR methods.Keywords: Face recognition, Covariance descriptors, Gabor features, Log-Euclidean kernel SVM, Voting
-
Nowadays, hyperspectral images (HIs) are widely used for land cover land use (LCLU) mapping. Hyperspectral sensors collect spectral data in numerous adjacent spectral bands, which are usually redundant. Hyperspectral data processing comes with important challenges such as huge processing time, difficulties in transfer, and storage. In this study, two supervised and unsupervised dimensionality reduction methods are proposed for hyperspectral feature extraction based on the band clustering technique. In the first method, the unsupervised method, after the unsupervised band clustering stage with some statistical attributes, the principal component transform is used in each cluster, and the first PC component is considered an extracted feature. In the second method, the supervised method, bands are clustered based on training samples mean vectors of each class, and the weighted mean operator is used for feature extraction in each cluster. The experiment is conducted on the classification of real famous HI named Indian Pines. Comparing the obtained results and some other state of art methods proved the proposed method's efficiency.
Keywords: Hyperspectral Image, Principal component analysis, K-means Clustering, Classification, Feature Extraction, Weighted Mean -
یکی از عواقب بروز آتش، دود است. گاها رصد دود و آشکارسازی آن می تواند به عنوان راهکاری به منظور جلوگیری از وقوع و یا گسترش آتش محسوب شود. از سوی دیگر، بواسطه ی اثرات مخرب گسترش دود برای سلامت انسان، می توان با پهنه بندی و پایش روند گسترش آن، تدابیر لازم را به منظور ارتقای سطح خدمات بهداشتی در دستورکار قرار داد. در این مقاله، روشی خودکار به منظور آشکارسازی دود رقیق ناشی از آتش سوزی های وسیع در تصاویر چندطیفی پیشنهاد شده است. ایده ی اصلی این روش، عدم امکان بازسازی دقیق دود در باندهای متاثر از دود (باندآبی) به کمک مدل های رگرسیونی از سایر باندهای طیفی است. در گام اول از روش پیشنهادی، قدر مطلق باقیمانده های تخمین رگرسیونی باند طیفی آبی به کمک آستانه گذاری اتسو به یک ماسک باینری تبدیل می شود. سپس در یک روند تکراری، نواحی غیر دود شناسایی و خوشه بندی می گردند. در روند تکرار، به ازای هر خوشه یک مدل رگرسیونی برازش یافته و برای هر پیسکل از ضرایبی که کمترین خطای بازسازی باند آبی را برخوردار باشند استفاده می شود. اینکار با تخمین دقیق تر باند آبی، اثر خطاهای نوع اول را کاهش داده و ماسک بدست آمده از روند آستانه گذاری باقیمانده ها را به سمت نواحی دود هدایت می سازد. آخرین گام از روند پیشنهادی نیز به پالایش و حذف قطعات تصویری نادرست اختصاص دارد. موفقیت این روش در شناسایی دودهای رقیق مطلوب بوده و از دیگر ویژگی های این روش نیز می توان به عدم شناسایی دود در تصاویر فاقد دود اشاره داشت. نتایج پیاده سازی این روش در چند مجموعه داده توام با دود های رقیق بطور متوسط دقت 04/99 درصدی را تامین ساخته است.
کلید واژگان: آشکارسازی دود، مدل رگرسیون خطی، خوشه بندی تکراری، آستانه گذاری اتسوOne of the consequences of a fire is smoke. Occasionally, monitoring and detection of this smoke can be a solution to prevent occurrence or spreading a fire. On the other hand, due to the destructive effects of the smoke spreading on human health, measures can be taken to improve the level of health services by zoning and monitoring its expansion process. In this paper, an automated method is proposed to detect the dilute smoke caused by large fires in multispectral images. The main idea of this method is the impossibility of precisely reconstructing the smoke in the bands affected by smoke (blue band) using regression models from other spectral bands. In the first step of the proposed method, the absolute value of the residuals of the regression estimation of blue spectral band is transformed into a binary mask with the help of Otsu thresholding. Afterwards, in an iterative process, non-smoke areas are detected and then clustered. In the iteration process, a regression model is fitted for each cluster and for each pixel, coefficients with the least error of the blue band reconstruction is used. Through more accurate estimation of the blue band, it reduces the effect of First Positive Error and leads the mask of residuals obtained from thresholding process to the smoke areas. The final step of the proposed method is to refine and remove the incorrect image segments. This method has been successful in detecting diluted smokes and also in disregarding smoke in non-smoky images. The results show the average accuracy of 99.04 percent in several datasets with diluted smokes.
Keywords: Smoke Detection, Linear Regression Model, Iterative Clustering, Otsu Tresholding
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.