mahdavinjad mahdavinjad
-
اهداف
امروزه استفاده از هوش مصنوعی رشد چشمگیری داشته، و به عنوان یک حوزه نوین در حال پیشرفت است. هدف اصلی این پژوهش، شناخت ظرفیت های هوش مصنوعی در پیشبرد فرآیند طراحی و اجرا در محیط مصنوع است. هدف کاربردی پژوهش، توسعه و کاربردی سازی مهمترین دستاوردهای یادگیری ماشینی و در حوزه طراحی است.
روش هاروش تحقیق اصلی پژوهش «فراتحلیل» در پارادایم «آزادپژوهی» با رویکرد انتقادی و طراحی مبنا است که با استفاده از تکنیک های پهنانگر، حوزه کلی دانشی این حوزه را بررسی می کند. سپس به منظور تثبیت اشراف به ادبیات موضوع، از طریق جستوجو در سه پایگاه های معتبر دانشی این حوزه، نسبت به جمع آوری مقالات مرتبط به یادگیری ماشین در حوزه های روش های یادگیری بدون نظارت، یادگیری نیمه نظارتی و یادگیری تقویتی اقدام شده؛ مهمترین ظرفیت ها و کاستی ها، و نقاط قوت و ضعف مورد نقد و بررسی قرار می گیرد.
یافته هایافته های کمی حاصل از داده های ترکیب شده بیانگر آن است که یادگیری ماشینی تحت نظارت و یادگیری عمیق هدایت شده، می تواند بهترین گزینه برای توصیه در آینده طراحی باشد. در حالی که فرآیند یادگیری در یادگیری عمیق تدریجی و کندتر است، یادگیری ماشینی تحت نظارت در مرحله آزمون و تست سریع تر عمل می کند.
نتیجه گیرینتایج پژوهش تاکید دارد که یادگیری ماشینی تحت نظارت، بهترین گزینه برای پیش بینی پاسخ ها در فرآیند طراحی است اما در صورتی که علاوه بر پیش بینی، موضوع خلاقیت در طراحی مورد نظر باشد، یادگیری عمیق کارآمدتر است.
کلید واژگان: رویکرد طراحی مبنا، یادگیری ماشینی تحت نظارت، فناوری های نوین معماری و شهرسازی، هوش مصنوعی، معماری سرآمد، طراحی رایانشیAimsToday, the use of artificial intelligence has grown significantly, and is developing as a new field. The main goal of this research is to know the capabilities of artificial intelligence in advancing the design and implementation process in the artificial environment. The practical goal of research is the development and application of the most important achievements of machine learning in the field of design.
MethodsThe main research method is "meta-analysis" research in the paradigm of "free research" with a critical approach and basic design, which examines the general knowledge field of this field using broad techniques. Then, to consolidate the literature on the topic, through searching three reliable knowledge bases of this field, we collected articles related to machine learning in the fields of unsupervised learning methods, semi-supervised learning, and reinforcement learning; The most important capacities and shortcomings, and strengths and weaknesses are reviewed.
FindingsQuantitative findings from the combined data indicate that supervised machine learning and directed deep learning can be the best option to recommend in the future of design. While the learning process in deep learning is gradual and slower, supervised machine learning works faster in the testing phase.
ConclusionThe research emphasizes that supervised machine learning is the best option for predicting answers in the design process. But if, in addition to prediction, the issue of creativity in design is desired, deep learning is more efficient.
Keywords: Designerly Approach, Supervised Machine Learning, New Technologies Of Architecture, Urban Planning, AI (Artificial Intelligence), Highperformance Architecture, Computational Design
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.