mohammad ali abolfathi
-
International Journal Of Nonlinear Analysis And Applications, Volume:16 Issue: 3, Mar 2025, PP 315 -322
In this paper, we introduce the concept of ternary Hom-Jordan derivation and solve the new 3D-Jensen $\rho$-functional equations in the sense of ternary Banach algebras. Moreover, we prove its Hyers-Ulam stability using the fixed point method.
Keywords: Ternary Hom-Jordan Derivation, 3D-Jensen Ρ-Functional Equations, Fixed Point Method -
International Journal Of Nonlinear Analysis And Applications, Volume:14 Issue: 3, Mar 2023, PP 189 -199Let $\mathcal{S}^{\ast}_{L}(\uplambda)$ and $\mathcal{CV}_L(\uplambda)$ be the classes of functions$f$, analytic in the unit disc $\Updelta=\{z\colon|z|<1\}$, with thenormalization $f(0)=f'(0)-1=0$, which satisfies the conditions\begin{equation*}\frac{zf'(z)}{f(z)}\prec \left(1+z\right)^{\uplambda}\quad\text{and}\quad \left(1+\frac{zf''(z)}{f'(z)}\right)\prec \left(1+z\right)^{\uplambda}\qquad \left(0<\uplambda\le 1 \right),\end{equation*}where $\prec$ is the subordination relation, respectively. The classes$\mathcal{S}^{\ast}_{L}(\uplambda)$ and $\mathcal{CV}_L(\uplambda)$ are subfamilies of the known classes of strongly starlike and convex functions of order $\uplambda$. We consider the relations between $\mathcal{S}^{\ast}_{L}(\uplambda)$, $\mathcal{CV}_L(\uplambda)$ and other classes geometrically defined. Also, we obtain the sharp radius of convexity for functions belonging to $\mathcal{S}^{\ast}_{L}(\uplambda)$ class. Furthermore, the norm of pre-Schwarzian derivatives and univalency of functions $f$ which satisfy the condition\begin{equation*}\Re\left\{1+\frac{zf''(z)}{f'(z)}\right\}<1+\frac{\uplambda}{2}\qquad\myp{z \in \Updelta}, \end{equation*}are considered.Keywords: Univalent functions, subordination, strongly starlike functions, Domain bounded by Sinusoidal spiral
-
International Journal Of Nonlinear Analysis And Applications, Volume:14 Issue: 1, Jan 2023, PP 1817 -1824
In this paper, we prove stability of multi-cubic functional equations in Lipschitz spaces by property multi-symmetric left invariant mean. Indeed, we prove under certain Lipschitz condition a family of Lipschitz mappings can be approximated by multi-cubic mappings.
Keywords: Lipschitz space, Multi-cubic functional equation, stability -
In this paper, we investigate approximations of the $k-th$ partial ternary cubic derivations on non-Archimedean $\ell$-fuzzy Banach ternary algebras and non-Archimedean $\ell$-fuzzy $C^{*}$-ternary algebras. First, we study non-Archimedean and $\ell$-fuzzy spaces, and then prove the stability of partial ternary cubic $*$-derivations on non-Archimedean $\ell$-fuzzy $C^{*}$-ternary algebras. We therefore provide a link among different disciplines: fuzzy set theory, lattice theory, non-Archimedean spaces, and mathematical analysis.
Keywords: Partial ternary derivation, Cubic derivation, Non-Archimedean, fuzzy algebra, ternary algebra, Hyers-Ulam-Rasias stability -
In this papers we investigate the Hyers-Ulam stability of the following 2-dimensional Pexider quadratic functional equation f(x+y,z+w)+f(x−y,z−w)=2g(x,z)+2g(y,w) in non-Archimedean normed spaces.
Keywords: Hyers-Ulam stability, 2-dimensional quadratic functional equation, Pexider quadratic functional equation, non-Archimedean normed space, p-adic field
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.