فهرست مطالب نویسنده:
r. gowri
-
Future wireless networks will use Universal Filtered Multicarrier (UFMC) as a new waveform modulation technique. The UFMC waveform sensibly considers the sub-band filter specifications such as filter order, and shape to combine the key benefits of the present generation modulation waveforms while averting their disadvantages. Therefore, in UFMC-based systems, it is important to pay attention to how the sub-band filter is made. In this paper, the sub-band filter configuration is adapted according to the sub-band size such that the UFMC symbol generates the minimum level of interference with minimum frequency selectivity. Also, the total interference caused by inter-carrier interference (ICI) and inter-sub-band interference (ISBI) was studied by finding the closed form of its change in the UFMC signal with sub-band size and filter length. From this analysis, we determined the ICI increases and ISBI decreases with filter length. Therefore, the proposed method optimizes the filter length in terms of sub-band size and interference. By this approach, the filter length is shorter than the conventional method and hence improves the symbol utilization. With the proposed method, the overall signal-to-interference ratio (SIR) improved by 1 to 3 dB.Keywords: bit error rate, Finite Impulse Response, Inter Carrier Interference, Inter Sub-band Interference, Signal to Intereference Ratio, Universal Filtered Multi-carrier
-
The Universal Filtered Multicarrier (UFMC) waveform technology is one of the promising waveforms for 5G and beyond 5G networks. Owing 2N-point Fast Fourier Transform (FFT) processor at the UFMC receiver, the computational and implementation complexity is two times more than the conventional Orthogonal Frequency Division Multiplexing (OFDM) receiver system. In this paper, we proposed a simplified UFMC receiver structure to reduce computational complexity as well as hardware requirements. The received UFMC symbol simplified exactly to its equivalent after performing 2N-point FFT and decimation operations. In which, the mathematical model of the frequency-domain UFMC signal is rederived after processing through 2N-point FFT and decimator, and the simplified signal is generated with an N-point FFT. Accordingly, the 2N-point FFT processor and decimator are replaced with a single N-point FFT processor. This approach reduces the 50% computational complexity at the FFT processor level hence the hardware and processing time. The computational complexity of the proposed receiver model is approximately equivalent to the OFDM receiver. Additionally, analyzed the mathematical model for the simplified UFMC receiver and the comparative performance of the UFMC system with the conventional model.Keywords: Fifth Generation, bit error rate, Complexity Reduction Ratio, Fast Fourier Transform, Finite Impulse Response, Signal to noise ratio, Universal Filtered Multicarrier
بدانید!
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.