r. ibrahim
-
Aims
Artificial intelligence (AI) and machine learning (ML) are revolutionizing healthcare by enhancing the prediction of learning needs and enabling tailored educational interventions for patients and staff. This study explores the application of AI and ML models to predict learning needs from the patient's perspective.
Instruments & MethodsThree ML models (Linear Regression, Random Forest, and Gradient Boosting) were trained on health literacy, demographic, and treatment data from 218 cancer patients at Sultan Qaboos Comprehensive Cancer Center. Evaluation metrics included Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), R2 Score, and Area Under the Curve (AUC). Classification models (Random Forest, Gradient Boosting, Decision Tree, and Extra Trees) were assessed for accuracy, precision, recall, F1-score, and AUC in categorizing learning needs.
FindingsGradient Boosting had the best predictive performance (MAE:0.0534, RMSE: 0.0788, R²:0.9844, AUC:0.96), followed by Random Forest (AUC:0.93). Linear Regression was less effective (AUC: 0.85). Key predictors included literacy level in chemotherapy, hormonal therapy, and treatment experiences, while demographic factors had minimal impact. For classification, Gradient Boosting and Decision Tree models achieved the highest accuracy (96.51%) and AUC (0.96). Random Forest showed 94.19% accuracy, while Extra Trees had 90.70%, indicating variability in model performance.
ConclusionAI and ML, particularly Gradient Boosting, demonstrate strong potential in predicting and categorizing learning needs.
Keywords: Artificial Intelligence, Machine Learning, Neoplasms, Chemotherapy, Health Literacy
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.