r. mdouki
-
The goal of this research is to redesign the three-dimensional geometry of a micro horizontal-axis wind turbine blade using response surface methodology. The variation of the two influential design parameters, chord length and twist angle, along the blade is geometrically modelled using a fourth- and second- degree polynomial, respectively. Therefore, the optimization process is performed basing on eight input parameters that describe the initial blade design. The performance of the initial and the new optimized wind turbine are compared using CFD and BEM approaches. To well study fluid flow through the wind turbine and assess its performance, the CFD analysis step is carried out using the RANS equations with the k-ω SST turbulence model. Concerning the optimization step, The MOGA (Multi-Objective-Genetic Algorithm) method is employed in an automated manner based on a metamodel with non-parametric regression NPR to identify the best candidate with high efficiency. The performance of turbine rotor types is analyzed using the open source Qblade software and compared with CFD methodology for different TSR (Tip Speed Ratio) values. An increase of 14.65% and 17.17% in power coefficient is marked for CFD and Qblade, respectively, at the design TSR of 3. Compared to the initial blade, the optimal one produces more lift, has a lower separation area, and performs significantly better performance at all TSR values. The detailed representation of 3D flow via pressure distribution and limiting streamlines on both blade surfaces confirm the optimization target which leads to reduce separation zones and improve rotor torque. Additionally, a 37% improvement in starting operability at the lowest wind speed is achieved compared to the initial rotor.Keywords: CFD, MOGA, RANS, Response Surface Method, Qblade, Optimization
-
The aim of this work is to carry out an aerodynamic analysis to assess the power and identify the characteristics of the horizontal axis Magnus type wind turbine with spiral fins. A parametric study is achieved to analyze the effects of the different influence parameters such as the turbine tip speed ratio, the cylinder spinning ratio, the blade aspect ratio and the cylinder hub-tip ratio. The analysis approach adopted in this study is the Blade Element Momentum BEM using the experimental lift coefficient data for the configuration of spinning cylinders with spiral fins. In this analysis, losses are not taken in consideration. Both axial and angular interference coefficients are evaluated for this type of wind turbine. The former is assessed by solving a quadratic equation and the latter is calculated from a classic formulation including the term of spinning. An iterative process is followed to achieve this task. Concerning the obtained results, the aerodynamic characteristics of the Magnus wind turbine, analyzed in this study, provide some elucidation to lead a successful preliminary design of this novel type of machine.
Keywords: Horizontal axis wind turbine, Magnus effect, Spiral fins, Blade element momentum, Parametricstudy
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.