فهرست مطالب نویسنده:
s. h. afzali
-
Scientia Iranica, Volume:28 Issue: 5, Sep-Oct 2021, PP 2493 -2503Lattice Boltzmann method (LBM) has emerged as a fast, precise, and efficient numerical solution to solve differential equations. There seems to be a dearth of research regarding the solution for groundwater flow in unconfined aquifer using LBM. Accordingly, in this study, an innovative numerical solution based on LBM was introduced to solve groundwater flow in unconfined aquifers, taking into account D2Q9 scheme. The solutions obtained from the proposed LBM were compared to results stemmed from three different unconfined groundwater problems with known solutions. Both steady and transient conditions for groundwater flow were considered in simulations. It was deduced that the proposed LBM could simulate the unconfined groundwater flow satisfactorily.Keywords: Lattice Boltzmann method, Groundwater flow, Unconfined Aquifer
-
Estimation of bridge backwater has been one of practical challenges in hydraulic engineering for decades. In this study, Genetic Programming (GP) has been applied for estimating bridge backwater for the first time based on the conducted literature review. Furthermore, two new explicit equations are developed for predicting bridge afflux using Genetic Algorithm (GA) and hybrid MHBMO-GRG algorithm. The performances of these models are compared with Artificial Neural Network (ANN) and several explicit equations available in the literature considering both laboratory and field data. Based on five considered performance evaluation criteria, the two new explicit equations outperform the ones available in the literature. Furthermore, GP and ANN achieve the best results in favor of four out of five considered criteria for train and test data, respectively. To be more specific, ANN improves the MSE and R2 values of the explicit equation developed using GA by 44% and 12% for the test data while GP enhances the corresponding values by 62% and 9% for the train data. Finally, the results demonstrate that not only artificial intelligence models considerably improve bridge afflux estimation than the explicit equations but also the suggested equations significantly improve the accuracy of the available explicit ones.Keywords: Hydraulic structures, bridge backwater estimation, Genetic programming, explicit equation, artificial neural network
بدانید!
- در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو میشود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشتههای مختلف باشد.
- همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته میتوانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
- در صورتی که میخواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.