به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

udith haputhanthri

  • Sumudu Herath *, Udith Haputhanthri
    A method for nonlinear material modeling and design using statistical learning is proposed to assist in the mechanical analysis of structural materials. Conventional computational homogenization schemes are proven to underperform in analyzing the complex nonlinear behavior of such microstructures with finite deformations. Also, the higher computational cost of the existing homogenization schemes inspires the inception of a data-driven multiscale computational homogenization scheme. In this paper, a statistical nonlinear homogenization scheme is discussed to mitigate these issues using the Gaussian Process Regression technique. A data-driven model is trained for different strain states of microscale unit cells. In the macroscale, nonlinear response of the macroscopic structure is analyzed, for which the stresses and material responses are predicted by the trained surrogate model.
    Keywords: Gaussian processes, multiscale modelling, material modelling, statistical learning, data-driven continuum ‎mechanics
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال