به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
فهرست مطالب نویسنده:

yahya ahmed yahya

  • Yahya Ahmed Yahya, Dalya Khaled, Waleed Khaild Al-Azzawi, Tawfeeq Alghazali, Huda Sabah Jabr, Rusul Madhat Abdulla, Mohammed Kadhim Abbas Al-Maeeni, Nathera Hussin Alwan, Salma Saad Najeeb, Khaldoon T. Falih

    The rapid increase in the number of medical image repositories nowadays has led to problems in managing and retrieving medical visual data. This has proved the necessity of Content-Based Image Retrieval (CBIR) with the aim of facilitating the investigation of such medical imagery. One of the most serious challenges that require special attention is the representational quality of the embeddings generated by the retrieval pipelines. These embeddings should include global and local features to obtain more useful information from the input data. To fill this gap, in this paper, we propose a CBIR framework that utilizes the power of deep neural networks to efficiently classify and fetch the most related medical images with respect to a query image. Our proposed model is based on combining Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs) and learns to capture both the locality and also the globality of high-level feature maps. Our method is trained to encode the images in the database and outputs a ranking list containing the most similar image to the least similar one to the query. To conduct our experiments, an intermodal dataset containing ten classes with five different modalities is used to train and assess the proposed framework. The results show an average classification accuracy of 95.32 % and a mean average precision of 0.61. Our proposed framework can be very effective in retrieving multimodal medical images with the images of different organs in the body.

    Keywords: content-based image retrieval, medical image retrieval, ensemble learning, convolutional neural networks, vision transformers, deep learning, similarity-based visual search
بدانید!
  • در این صفحه نام مورد نظر در اسامی نویسندگان مقالات جستجو می‌شود. ممکن است نتایج شامل مطالب نویسندگان هم نام و حتی در رشته‌های مختلف باشد.
  • همه مقالات ترجمه فارسی یا انگلیسی ندارند پس ممکن است مقالاتی باشند که نام نویسنده مورد نظر شما به صورت معادل فارسی یا انگلیسی آن درج شده باشد. در صفحه جستجوی پیشرفته می‌توانید همزمان نام فارسی و انگلیسی نویسنده را درج نمایید.
  • در صورتی که می‌خواهید جستجو را با شرایط متفاوت تکرار کنید به صفحه جستجوی پیشرفته مطالب نشریات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال