unit-based
در نشریات گروه جغرافیا-
یادگیری عمیق یک روش مدرن پردازش تصویر و تجزیه و تحلیل داده هاست که با داشتن نتایج امیدوار کننده و پتانسیل بالا وارد حوزه مدیریت شهری شده است. پروژه (OSM)Open Steet Map بزرگ ترین مجموعه داده های مکانی داوطلبانه است که در بسیاری از حوزه های کاربردی مختلف به عنوان مکمل یا جایگزین با داده های مرجع استفاده می شود. در بعضی از موارد در کشورهای پیشرفته دقت داده های داوطلبانه تولید شده توسط موبایل و دیگر ابزار توسط کاربران حتی بیش از داده ی مرجع دولتی می باشد. هدف از تحقیق حاضر ارزیابی استفاده از هوش مصنوعی در تکمیل داده های داوطلبانه در مناطق کمتر مشارکت شده توسط داوطلبان می باشد. ابتدا با استفاده از شبکه عصبی کانولوشنی Res_UNet کاربری اراضی با دقت 83 درصد به دست آمد، سپس با توجه به پیش بینی انجام شده، از روش واحد مبنا جهت ارزیابی میزان کامل بودن داده های OSM استفاده شد. نتایج نشان می دهد میزان کامل بودن بلوک های ساختمانی OSM در کل منطقه مطالعاتی برابر با 6/3 درصد، جنگل ها7/9درصد، درخت های میوه 4/90 درصد و زمین های کشاورزی 88/81درصد می باشد. که نشان از نرخ پایین کامل بودن بلوک های ساختمانی و جنگل و نرخ بالای کامل بودن زمین های کشاورزی و درختان میوه می باشد. نتایج تحقیق بیانگر درصد مشارکت پایین داوطلبانه درتولید داده های مکانی می باشد. از طرفی دقت بالای تولید کاربری اراضی توسط هوش مصنوعی نتایج امیدوارکننده ای را در استفاده از هوش مصنوعی در تولید و تکمیل داده های داوطلبانه به جای نیروی انسانی بخصوص در کشورهای کمتر توسعه یافته یا مناطق با جمعیت داوطلب کمتر یا نقاط دورافتاده و صعب العبور ارائه میدهد
کلید واژگان: هوش مصنوعی و OSM، کاربری اراضی، کامل بودن، یادگیری عمیق، واحد مبنا، کرجNowadays, deep learning as a branch of artificial intelligence acts as an alternative for human with hopeful outcomes. Open Street Map as the biggest open source data is used as a complementary data sources for spatial projects. It is notable that is some advanced counties the accuracy of VGI data is higher than governmental official data. This research aims to use artificial intelligence to produce and subsequently promote completeness of OSM data. Res_UNet architecture was utilized to train landuse categories to the network. The result shows that IoU metric is about 83 percent that implies a high accuracy paradigm. Then, united-based method was used to calculated completeness of OSM data. The unit-based results show that completeness of building blocks, forest, fruits garden and agriculture land are: 3.6, 9.7, 90.4 and 81.88 respectively. It shows the low volunteer participation rate to produce OSM data. On the other side the high accuracy achieved by deep learning leads us to complete OSM data by artificial intelligence instead of human prepared data. The advantage of using machine rather than human may be utilized in undeveloped countries or low density population regions as well as inaccessible areas.
Keywords: Artificial Intelligence, Deep Learning, OSM, Land Use, Unit-Based, Karaj
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.