data processing
در نشریات گروه مدیریت-
In the contemporary business landscape, organizations face unprecedented levels of market volatility and complexity. Traditional decision-making tools often fall short in navigating these uncertain environments. This paper discusses the emergent capabilities of predictive and prescriptive analytics powered by Artificial Intelligence (AI) in aiding strategic decision-making. We explore the technological advancements that allow businesses to process vast amounts of data and generate insightful forecasts and recommendations. Drawing on diverse case studies, we analyze the efficacy of AI analytics in real-world business scenarios and discuss the evolution of these tools to handle ambiguities inherent in business data. The paper also addresses the ethical considerations and advocates for frameworks to ensure responsible AI utilization in strategic decisions. The results highlight a significant potential for AI to revolutionize decision-making protocols, thus enabling businesses to maintain a competitive edge in volatile markets.
Keywords: Predictive, Prescriptive Analytics, Market Volatility, Strategic Decision-Making, Data Processing -
The Special Issue on “Recent Advances, Challenges and Future Trends in eHealth Informatics” of Journal of Information Technology Management (JITM) presents advancing research, technologies, and applications in this rapidly developing field of eHealth care. Focusing on a collection of key topics such as health wireless devices; hardware and body sensors and software sensing technologies, Internet of Medical Things (IoMT), Trending health analysis with social networking mobile/cellular networks and body area networks; health information technology, Bigdata analytics; genomics, personal genetic information and much more. Recent Advances, Challenges and Future Trends in eHealth Informatics section has provided a platform for authors, reviewers, researcher around world to present their discoveries and innovations in modernizing the eHealth informatics field. This Special Issue aims to address diverse topics that require new scientific contributions such as healthcare methods and digital devices use in social and health care, influence of the use of the internet/social networks, specific interventions in health and social care using digital health to change clinical and social status, Healthcare Internet of Things (HIoT), digital applications for public health, or patient empowerment and participatory care through digital technologies.
Keywords: EHealth Informatics, Recent Medical Advancements, Internet of Medical Things (Iomt), Public Health Biomedical, Data Processing -
This research is done in a mixed way (thematic analysis and data mining). In the first step, based on the qualitative method of thematic analysis, the effective factors of knowledge-based career path planning with a high-performance approach and data processing approach are identified. The investigated population is the managers and decision-makers of Zone Ten of Iran's gas transmission operations. 10 people were purposefully selected and interviewed. These people had more than 10 years of work experience in this organization. Using the six-step coding method, the interviews were entered into the MAXQDA software, and the effective factors on career path planning with a high-performance approach based on organizational knowledge were identified. Data was collected in SPSS format and used as input in WEKA software. The path of career development in this research was determined based on the dimensions of individual factors, organizational factors, empowerment strategies, management strategy, culture-building strategies, process development, and management processes. The operationalization of these factors in data mining showed that the situation of the predicted career path has significant differences from the reality of the organization. This procedure can be improved by periodic knowledge extraction and long-term performance evaluation. The obtained results showed that the knowledge-oriented career path emphasizes the empowerment of employees in a specialty. The level of knowledge participation of employees does not only mean that the employee shows useful behaviors for the organization within the organization, but also includes the attitude of people towards the company and recognizing their existential value in the company.Keywords: Career Path Planning, Knowledge-Based Planning, High-Performance Approach, Data processing
-
امروزه تغییرات با نرخ سریع تری به وقوع می پیوندند. تغییرات فناوری و متعاقبا تغییر در دیگر جنبه های زندگی، افزایش روزافزون وابستگی متقابل کشورها و ملل، تمرکززدایی جوامع و نهادهای موجود که به دلیل گسترش فناوری اطلاعات شتاب بیشتری یافته است، تمایل روزافزون به جهانی شدن به همراه حفظ ویژگی های ملی، قومی، فرهنگی و بسیاری عوامل دیگر، لزوم درک بهتر از «تغییرات» و «آینده» را برای دولت ها، کسب و کارها، سازمان ها و مردم ایجاب می کند. آینده پژوهی به عنوان زیر مجموعه این فعالیت بزرگ، مشتمل بر مجموعه تلاش هایی است که با استفاده از تجزیه و تحلیل منابع، الگوها و عوامل تغییر و یا ثبات، به تجسم آینده های بالقوه و برنامه ریزی برای آن ها می پردازد. این رشته در جامعه ما ایران در دوران طفولیت خود به سر می برد در نتیجه آسیب پذیرتر است. آینده پژوهی برای رسیدن به جایگاه شایسته خود در دهه های آتی می بایست، از روش های نوین پیش بینی آینده بهره بگیرد. امروزه فناوری اطلاعات باعث تولید کامپیوترهای قدرتمند بسیاری شده است که امکان جمع آوری، انتقال، ترکیب و ذخیره حجم زیادی از داده ها را با هزینه کم، عملی ساخته است. افزایش حجم پایگاه داده ها، سازمان ها را به سمت استخراج اطلاعات از داده های ذخیره شده رهنمون می سازد. با استفاده از الگوریتم های یادگیری می توان دانش نهفته در این داده ها را استخراج نمود و به کمک آن ها آینده را پیش بینی نمود. لذا در این مقاله، روش جدید مبتنی بر الگوریتم های یادگیری برای پردازش داده جهت اتخاذ راهکارهای آینده پژوهی ارائه شده است.کلید واژگان: آینده پژوهی، پردازش داده، الگوریتم های یادگیری، پایگاه داده، آموزش عالیNowadays changes happen with rapid rates. Technological changes and subsequent changes in other aspects of life, the increasing interdependence of countries and peoples, societies and institutions that decentralization has been accelerated due to the development of information technology, globalization and the increasing desire to preserve national characteristics, ethnic, cultural and many other factors The need for a better understanding of "change" and "future" for governments, businesses, organizations and people require. Futures Studies as a subset of the major activities, including the collection and analysis efforts, using resources, models and agents of change or stability, to visualize the potential futures and planning for them. The field remains in its infancy in our country is so vulnerable. Futures Studies to achieve its rightful place in the coming decades should take advantage of new ways to predict the future. Today, IT is the most powerful computers make it possible to collect, transfer, combination and store large volumes of data with low cost, is practical. Increase the volume database to extract information from data stored organizations leads. Using the knowledge hidden in the data mining learning algorithms can be used to help predict the future. In this paper, a new method based on learning algorithms for data processing strategies for Futures Studies presented.Keywords: future studies, Data Processing, Learning Algorithms, Database, Higher Education
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.