به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

adaptive fuzzy neural inference system

در نشریات گروه مالی
تکرار جستجوی کلیدواژه adaptive fuzzy neural inference system در نشریات گروه علوم انسانی
تکرار جستجوی کلیدواژه adaptive fuzzy neural inference system در مقالات مجلات علمی
  • علی شیدائی نرمیقی، فریدون رهنمای رودپشتی*، رضا رادفر
    چندین سال است که پژوهشگران به بررسی و تحقیق درباره مسایل مربوط به بهینه سازی سبد سرمایه گذاری پرداخته اند . یکی از موضوعات اصلی مشخص کردن روش بهینه سازی است که به تشکیل سبد سرمایه گذاری بهینه یعنی حداقل نمودن ریسک سرمایه گذاری و حداکثر کردن سود سرمایه گذاری می باشد. هدف پژوهش حاضر بررسی قابلیت راهبرد ماتریس شبکه و مدل فازی عصبی ژنتیک (ANFIS) در بهینه سازی سبد سرمایه گذاری از بین شرکت های بورس اوراق بهادار تهران است. گروه بندی سهام بوسیله ماتریس شبکه مبتنی بر متغیرهای نوین شامل سهام تهاجمی ، بی تفاوت و تدافعی که توسط رهنمای رودپشتی (1388) ارایه شده و متغیرهای سنتی شامل سهام رشدی ، رشدی -ارزشی و ارزشی و دسته بندی شرکت ها براساس ارزش بازار آنها و استفاده از قانون چارک ها و در نهایت وزن دهی آنها متناسب با بازدهی آن سهم در نظرگرفته می شود. نسبت به طراحی و ارایه یک مدل بهینه سازی سبد سرمایه گذاری سهام با استفاده از سیستم استنتاج عصبی فازی انطباقی و ترکیب آن با الگوریتم ژنتیک (ANFIS) پرداخته شده است که در آن از دو دسته مختلف متغیرهای فنی و بنیادی به عنوان ورودی های مدل استفاده می شود. خروجی های تحقیق نشان می دهد این سیستم ها از توانایی لازم برای بهینه سازی سبد سهام برخوردار می باشند. بنابراین یک مدل ترکیبی شبکه های عصبی و تیوری استدلال فازی همراه با الگوریتم ژنتیک به منظور وزن دهی عامل های موثر در بهینه سازی سبد سهام در 7 سال منتهی به سال 1398 بکار گرفته شده است.
    کلید واژگان: بهینه سازی سبد سهام، شبکه های عصبی مصنوعی، منطق فازی، الگوریتم ژنتیک، سیستم استنتاج عصبی فازی انطباقی
    ALI Sheidaeinarmigi, Fraydoon Rahnamay Roodposhti *, Reza Radfar
    Researchers have been researching portfolio optimization issues for several years. One of the main issues is to determine the optimization method, which is to form an optimal investment portfolio, ie to minimize investment risk and maximize investment profit. The aim of this study is to investigate the strategic capability of network matrix and fuzzy genetic neural model (ANFIS) in optimizing the investment portfolio among companies on the Tehran Stock Exchange. Grouping stocks by network matrix based on new variables including aggressive, indifferent and defensive stocks provided by Roodpashti (2009) and traditional variables including growth, growth-value and value stocks and classification of companies based on their market value and use. From the law of quarters and finally their weighting is considered in proportion to the return of that share. The design and presentation of a stock portfolio optimization model using adaptive fuzzy neural inference system and its combination with genetic algorithm (ANFIS) in which two different categories of technical and fundamental variables are used as model inputs. Research outputs show that these systems have the necessary ability to optimize the stock portfolio. Therefore, a combined model of neural networks and fuzzy reasoning theory with genetic algorithm has been used to weight the factors affecting stock portfolio optimization in the 7 years leading up to 1398.
    Keywords: Stock portfolio optimization, Artificial Neural Networks, Fuzzy Logic, Genetic algorithm, adaptive fuzzy neural inference system
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال