lars algorithm
در نشریات گروه مالی-
یکی از مهمترین موضوعات حوزه مدیریت مالی، آن است که سرمایه گذاران بتوانند فرصت های مطلوب سرمایه گذاری را از فرصت های نامطلوب تشخیص دهند. یکی از راهکارهای کمک به سرمایه گذاران پیش بینی احیای مالی (خروج از درماندگی) شرکت های دارای درماندگی مالی است. از این رو، این پژوهش در صدد است مدلی جهت پیش بینی احیای مالی با استفاده از الگوریتم ماشین بردار پشتیبان برای شرکت های پذیرفته شده در بورس اوراق بهادار تهران ارایه نماید. برای دستیابی به این هدف،54 متغیر مالی با استفاده از الگوریتم انتخاب ویژگی لارس تعیین گردید و برای آزمون دقت نتایج مدل پیشنهادی از الگوریتم یادگیر ماشین بردار پشتیبان استفاده شده است. بدین منظور در دوره زمانی 1380 تا1397 اطلاعات 167 شرکت درمانده ای که از درماندگی مالی خارج و احیا شده اند، استخراج گردید. یافته های پژوهش نشان می دهد، مدل تحقیق با دقت 74% زمان احیا و خروج شرکت درمانده مالی را از درماندگی مالی به درستی پیش بینی می نماید.
کلید واژگان: درماندگی مالی، احیای مالی، الگوریتم لارس، ماشین بردار پشتیبانOne of the most important issues in the field of financial management is that investors can distinguish favorable investment opportunities from unfavorable ones. One way to help investors is to anticipate the financial recovery (exit from helplessness) of companies with financial distress. Therefore, this study intends to provide a model for predicting financial recovery using the support vector machine algorithm for companies listed on the Tehran Stock Exchange. To achieve this goal, 54 financial variables were determined using the Lars feature selection algorithm and to test the accuracy of the results of the proposed model, the support vector learning algorithm was used. For this purpose, in the period of 2001-2018, the information of 167 helpless companies that were out of financial helplessness and revived was extracted. The research findings show that the research model accurately predicts the recovery time of the financially helpless company from financial distress with 74% accuracy.
Keywords: Financial Distress, LARS Algorithm, Support Vector Machine Algorithm -
In a volatile economic environment, financial decision making is always associated with risk. Bankruptcy, as one of the most important risks, has a significant impact on the interests of the firm's stakeholders, so presenting appropriate bankruptcy forecasting patterns is of the utmost importance. In this study, after reviewing the theoretical literature and selecting the financial ratios used in previous bankruptcy prediction models as the variable input of the initial model, the financial ratios were adjusted based on the price index and then, using the LARS algorithm, the ratios that have the highest ability to differentiate between bankrupt and non-bankrupt firms were identified, and finally, using the SVM and Naive Bayesian algorithms, the final bankruptcy prediction model was developed. For this purpose, the data of 50 companies listed in Tehran Stock Exchange who had experienced bankruptcy for at least one year from 2008 to 2018 under Article 141 of the Commercial Code were used. The results show that the adjusted financial ratios based on the price index in the model presented by SVM algorithm can be a very good predictor for bankruptcy of companies with an accuracy of 99.4%.
Keywords: bankruptcy, General Price Index, financial ratio, LARS Algorithm
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.