به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

maximum relationship method (mrmr)

در نشریات گروه مالی
تکرار جستجوی کلیدواژه maximum relationship method (mrmr) در نشریات گروه علوم انسانی
تکرار جستجوی کلیدواژه maximum relationship method (mrmr) در مقالات مجلات علمی
  • محمود رضایی، حسین پناهیان*، مهدی معدن چی زاج، حسن قدرتی

    نقد شوندگی سهام یک چالش مهم در بازار سرمایه می باشد. شناسایی عوامل اثرگذار بر نقدشوندگی، به پیش بینی وضعیت نقدشوندگی سهام و در نتیجه مدیریت ریسک سهام کمک می کند. هدف این تحقیق یافتن عوامل تاثیرگذار بر نقد شوندگی سهام می باشد. بدین منظور در مرحله اول با استفاده از ادبیات تحقیق و خبرگان عوامل اثرگذار مشخص و با استفاده از روش های حداقل افزونگی و حداکثر ارتباط (MRMR) و الگوریتم ژنتیک، متغیرهای تاثیرگذار انتخاب شده اند. در انجام این پژوهش با استفاده از نرم افزارExcel و داده های خام موجود ، داده های مورد نیاز ایجاد شده و سپس با استفاده از نرم افزارمتلب و جعبه ابزار شبکه عصبی و ماشین بردار پشتیبان ساخته شد. . در نهایت متغیرهای استخراجی با استفاده از MRMR ، شامل ارزش بازار سهام، شدت رقابت در بازار محصول، رشد تولید ناخالص داخلی، بازده حقوق صاحبان سهام، بازده سهام، نرخ تورم و مالکیت خانوادگی و با استفاده از الگوی ژنتیک اهرم مالی، مالکیت دولتی، بازده حقوق صاحبان سهام، رشد تولید ناخالص داخلی، درصد شناوری سهم، نوع بازار و تابلو (در بورس و فرابورس)، شدت رقابت در بازار محصول انتخاب شدند.

    کلید واژگان: نقدشوندگی سهام، شبکه عصبی، الگوریتم ژنتیک، روش حداقل افزونگی و حداکثر ارتباط(MRMR)
    Mahmoud Rezaei, Hossein Panahian *, Mahdi Madanchi Zaj, Hasan Ghodrati

    Liquidity of stocks is an important challenge in the capital market. Identifying the factors affecting liquidity helps to predict the stock liquidity situation and thus stock risk management. The purpose of this study is to find the factors affecting the liquidity of stocks. For this purpose, in the first stage, using the research literature and experts, the influencing factors are identified and using the methods of minimum redundancy and maximum correlation (MRMR) and genetic algorithm, the effective variables are selected. In this research, using Excel software and existing raw data, the required data was created and then using support software and neural network toolbox and support vector machine was created. . Finally, the extracted variables using MRMR include stock market value, intensity of product market competition, GDP growth, equity returns, stock returns, inflation rate and family ownership, and using the financial model of financial leverage, government ownership, Equity returns, GDP growth, share buoyancy percentage, market type and board (on the stock exchange and OTC), the intensity of competition in the product market were selected.

    Keywords: Stock Liquidity, Neural network, Genetic Algorithm, Minimum Redundancy, Maximum Relationship Method (MRMR)
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال