2$-embeddings
در نشریات گروه ریاضی-
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G$ is said to be friendly if $| v_{f}(1)-v_{f}(0) | leq 1$. The friendly index set of the graph $G$, denoted by $FI(G)$, is defined as ${|e_{f^+}(1) - e_{f^+}(0)|$ : the vertex labeling $f$ is friendly$}$. The full friendly index set of the graph $G$, denoted by $FFI(G)$, is defined as ${e_{f^+}(1) - e_{f^+}(0)$ : the vertex labeling $f$ is friendly$}$. A graph $G$ is cordial if $-1, 0$ or $1in FFI(G)$. In this paper, by introducing labeling subgraph embeddings method, we determine the cordiality of a family of cubic graphs which are double-edge blow-up of $P_2times P_n, nge 2$. Consequently, we completely determined friendly index and full product cordial index sets of this family of graphs.
Keywords: Vertex labeling, Full friendly index set, Cordiality, $P, 2$-embeddings, $C, 4$-embeddings
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.