به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

cryptography

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه cryptography در نشریات گروه علوم پایه
  • Mohammed EL BARAKA *, Siham Ezzouak
    ‎This paper proposes a novel isogeny-based cryptographic protocol that leverages the dual hardness of the isogeny problem and linear code decoding for secure post-quantum key exchange‎. ‎The proposed protocol‎, ‎Isogeny-Based Key Exchange with Error-Correcting Codes (IKEC)‎, ‎offers enhanced security‎, ‎computational efficiency‎, ‎and practical applicability‎, ‎making it a viable alternative to existing schemes like SIDH‎. ‎We provide a rigorous mathematical description of the protocol‎, ‎including key generation‎, ‎key exchange‎, ‎security analysis‎, ‎and performance evaluation‎. ‎Additionally‎, ‎we present a formal analysis‎, ‎comprehensive comparisons with existing protocols‎, ‎and insights into potential attack vectors and countermeasures‎. ‎The discussion concludes with potential real-world applications‎, ‎advanced cryptographic techniques‎, ‎and future research directions‎.
    Keywords: Isogeny‎, ‎Cryptography‎, ‎Elliptic Curves‎, ‎Supersingular Isogeny Graphs‎, ‎Post-Quantum Cryptography
  • Kalika Prasad, Munesh Kumari, Hrishikesh Mahato *
    In this paper, we propose a generalized Lucas matrix (a recursive matrix of higher order) obtained from the generalized Fibonacci sequences. We obtain their algebraic properties such as direct inverse calculation, recursive nature, etc. Then, we propose a modified public key cryptography using the generalized Lucas matrices as a key element that optimizes the keyspace construction complexity. Furthermore, we establish a key agreement for encryption-decryption with a combination of the terms of generalized Lucas sequences under the residue operation.
    Keywords: Affine-Hill Cipher, Cryptography, Fibonacci Sequence, Lucas Sequence, Lucas Matrix
  • فریدون حبیبیان دهکردی*، نجمه میرزاثانی
    هدف این مقاله نقد و بررسی پرسشی متداول درباره علم ریاضی است که توسط افراد مختلف جامعه با عبارت های گوناگونی مانند « ‎‎آیا ریاضی سودمند است؟»‏، «‎ریاضی چه فایده ای دارد؟»‏، «چطور می توان از ریاضی استفاده کرد؟»‎‎ و... مطرح می شود‎؛ هدف این است که هر شخص خودش قادر به پاسخ گویی به این پرسش و دستیابی به درکی از آن باشد. برای این منظور، اطلاعات و حقایقی مانند استفاده های مختلف از علم ریاضی و ریاضی دانان در زمان های جنگ و برخی دستاوردهای عظیم ریاضی محض برای تمدن بشری عرضه خواهند شد. همچنین دلایلی مبنی بر لزوم بهره مندی تمام افراد جامعه، شامل مردم عادی و سیاست مداران‏، از علم ریاضی و نیز برخی عواقب سواد پایین ریاضی مطرح می شود. در ادامه‏، مطالبی قابل تامل درباره نبود تماس مستقیم عموم مردم با ریاضیات، نداشتن کمترین ذهنیتی از آنچه ریاضی دانان انجام می دهند‏، و موضوع ترغیب یادگیری اختیاری ریاضی شرح داده می شود. در پایان‏، برخی تجربیات و فعالیت های نویسنده در زمینه ترویج و محبوب سازی ریاضی مطرح خواهد شد.
    کلید واژگان: سودمندی ریاضیات، فرهنگ، کاربردهای ریاضیات، ترویج ریاضیات، رای دادن‏، رمزنگاری
    F. Habibian Dehkordi *, ‎N‎. ‎ ‎Mirzasani
    The purpose of this article is to review a common question about mathematics, which is asked by different people in the society with various expressions such as "Is mathematics useful?", "What is the use of mathematics?", "How can mathematics be used?” and it is raised; The goal is for each person to be able to answer this question and gain an understanding of it. For this purpose, information and facts such as different uses of mathematics and mathematicians in times of war and some great achievements of pure mathematics for human civilization will be presented. There are also reasons for the necessity of benefiting all members of the society, including ordinary people and politicians, from mathematics, as well as some consequences of low mathematical literacy. In the following, some interesting things about the general public's lack of direct contact with mathematics, not having the slightest idea of ​​what mathematicians do, and the issue of encouraging optional mathematics learning are described. In the end, some experiences and activities of the author in the field of promoting and popularizing mathematics will be discussed.
    Keywords: ‎‎Usefulness Of Mathematics, Culture, Applications Of Mathematics, Popularization Of ‎Mathematics, Voting, ‎ Cryptography
  • Azadeh Naseri, Ahmad Abbasi *, Reza Atani
    We consider a new class of square Fibonacci $(q+1)\times(q+1)$-matrices in public key cryptography. This extends previous cryptography using generalized Fibonacci matrices. For a given integer $q$, a $(q+1)\times(q+1)$ binary matrix $M_{q}$ is a matrix which nonzero entries are located either on the super diagonal or on the last row of the matrix. In this article, we have proposed a modified public key cryptography using such matrices as key in Hill cipher and key agreement for encryption-decryption of terms of $M_{q}$-matrix. In this scheme, instead of exchanging the whole key matrix, only a pair of numbers needed to be exchanged, which reduces the time complexity as well as the space complexity of the transmission and has a large key space.
    Keywords: Cryptography, Hill cipher, key exchange Elgamal, Fibonacci sequence, $M, {q}$-matrix
  • Munesh Kumari *, Jagmohan Tanti
    In this paper, we propose public key cryptography using recursive block matrices involving generalized Fibonacci numbers over a finite field $\mathbb{Z}_{p}$. For this, we define multinacci block matrices, a kind of upper triangular matrix involving multinacci matrices at diagonal places and give some of its algebraic properties. Moreover, we set up a method for key element agreement at end users, which makes cryptography more efficient. The proposed cryptography comes with a large key space and its security relies on the Discrete Logarithm Problem (DLP).
    Keywords: Fibonacci matrix, Block Matrix, cryptography, Keyspace
  • علی پارسیان*، زهرا پارسیان
    در بیشتر متون ریاضی، به عمل تفاضل متقارن و ویژگی های آن کمتر توجه شده است. در این مقاله، نخست برخی ویژگی های اساسی این عمل را اثبات و سپس فرمولی بیان می کنیم که در آن عدد اصلی مجموعه ای متشکل از ترکیب تفاضل متقارن تعداد متناهی مجموعه برحسب عدد اصلی مجموعه های تشکیل دهنده تعیین می شود. همچنین، فرمولی برای محاسبه احتمال وقوع پیشامدی متشکل از ترکیب تفاضل متقارن تعداد متناهی پیشامد برحسب احتمال پیشامدهای تشکیل دهنده ارایه می دهیم. سرانجام، مقاله را با اشاره به کاربردی از این روابط در نظریه رمز به پایان می بریم.
    کلید واژگان: عدد اصلی، تفاضل متقارن، احتمال، جایگشت، اصل شمول و عدم شمول، رمزگذاری
    A. Parsian *, Z. Parsian
    In the most mathematical texts‎, ‎there have been paid less attention to “symmetric difference” and its properties‎. ‎In this article‎, ‎after verifying some basic properties of this operation‎, ‎we provide a formula for computing the cardinal (res‎. ‎probability) of the sets (res‎. ‎events) obtained from the combination of symmetric difference of finite number of sets (res‎. ‎events)‎, ‎in terms of the cardinal (res‎. ‎probability) of the constituent sets (res‎. ‎events)‎. ‎Finally‎, ‎we end the article by an application in cryptography‎.
    Keywords: cardinal‎, ‎symmetric difference‎, ‎probability‎, ‎permutation‎, ‎inclusion-exclusion principle‎, ‎cryptography
  • Bashir Omrani Harzand, Mohammadreza Motadel *, Ali Broumandnia
    In the era of information technology and the expansion of global networks, digital document management systems play a crucial role in providing services. The use of digital instead of paper documents has become more common to reduce the administrative costs in small and large organizations. One of the most significant concerns of such systems, though, is the security of documents against alteration or distortion. There are various ways to increase the security of digital documents and this paper is aimed at providing a new framework of the combination of steganography and cryptography to increase the security of digital documents.The proposed method first has been tested and reviewed with MATLAB 2018 software on standard images such as Lena, Baboon and Pepper. Then, it has been tested on digital documents of the Social Security Organization through the proposed conceptual model which utilizes a combination of unique image features to generate messages. The evaluation of results indicates the effectiveness of the proposed method and its applicability in digital document management systems.
    Keywords: Document Management, Image Steganography, Cryptography, Security
  • Mohammed Abdul Hameed Jassim Al-Kufi, Hussein Abbas Shniar Al-Salihi

    In this research, we will hide an image we call the secret image inside another image we call the repository. After converting the color values of both images from decimal to binary, we copy the stored images into four copies and use the eighth and seventh bits of these copies to hide the full bits of the secret image starting with the first. Two to be replaced in the eighth and seventh parts, respectively in the first version, then we hide the third and fourth bits of the secret image in the eighth and seventh parts, respectively, of the second version of the repository images, after that we hide the fourth and fifth parts of the secret image in the eighth and seventh parts of The third version of the repository image, then finally we put the last two bits of the secret image in the eighth and seventh parts of the fourth version of the image After that, we retrieve the color values of the images formed from the binary system to the decimal system so that we have four new warehouse images, but the secret image that did not show any features in the images roduced in order to strengthen the masking process, we encrypt those formed images using one of the mathematical analyzes within the field of analysis Numerical, which is the analysis of LU factors, which analyzes the image or divides it into two images, and we will see this through the working methodology.

    Keywords: Cryptography, Steganography, LU factorization, Digital images
  • Sameerah Faris Khlebus, Rajaa K. Hasoun, Bassam Talib Sabri

    Cayley- Purser Algorithm is a public key algorithm invited by Sarah Flannery in 1998. The algorithm of Cayley-Purser is much faster than some public key methods like RSA but the problem of it is that it can be easily broken especially if some of the private key information is known. The solution to this problem is to modify this algorithm to be more secure than before so that it gives its utilizers the confidence of using it in encrypting important and sensitive information. In this paper, a modification to this algorithm based on using general linear groups over Galois field $GF(p^n)$, which is represented by $GL_m(GF(p^n))$ where $n$ and $m$ are positive integers and $p$ is prime, instead of $GL_2(Z_n)$ which is General linear set of inverted matrices $2 times 2$ whose entries are integers modulo $n$. This $GL_m(GF(p^n))$ ensures that the secret key of this algorithm would be very hard to be obtained. Therefore, this new modification can make the Cayley-Purser Algorithm more immune to any future attacks.

    Keywords: Cryptography, Cayley- Purser Algorithm, Galois field GF(pn), General Linear groupover GF(pn)(GLm(GF(pn)), Encryption, Decryption
  • Shahrooz Janbaz *, Bagher Bagherpour, Ali Zaghian
    ‎The characterization of the ideal access structures is one of the main open problems in secret sharing and is important from both practical and theoretical points of views‎. ‎A graph-based $3-$homogeneous access structure is an access structure in which the participants are the vertices of a connected graph and every subset of the vertices is a minimal qualified subset if it has three vertices and induces a connected graph‎. ‎In this paper‎, ‎we introduce the graph-based $3-$homogeneous access structures and characterize the ideal graph-based $3$-homogeneous access structures‎. ‎We prove that for every non-ideal graph-based $3$-homogeneous access structure over the graph $G$ with the maximum degree $d$ there exists a secret sharing scheme with an information rate $frac{1}{d+1}$‎. ‎Furthermore‎, ‎we mention three forbidden configurations that are useful in characterizing other families of ideal access structures‎.
    Keywords: ‎Cryptography‎, ‎Secret sharing‎, ‎Ideal access structures‎, ‎Graph-based access structures‎, ‎3-homogeneous access structures
  • Mahnaz Mohammadi, A. Zolghadrasli, M. A. Pourmina

    RSA is a well-known public-key cryptosystem. It is the most commonly used and currently most important public-key algorithm which can be used for both encryption and signing. RSA cryptosystem involves exponentiation modulo an integer number n that is the product of two large primes p and q. The security of the system is based on the difficulty of factoring large integers in terms of its key size and the length of the modulus n in bits which is said to be the key size. In this paper, we present a method that increases the speed of RSA cryptosystem. Also an efficient implementation of arithmetic and modular operations are used to increase its speed. The security is also enhanced by using a variable key size space. There exist numerous implementations (hardware or software) of RSA cryptosystem, but most of them are restricted in key size. An important improvement achieved in this paper is that the system is designed flexibly in terms of key size according to user security.

    Keywords: Cryptography, RSA Cryptosystem, public key, private key, prime numbers, encryption, decryption, modular reduction
  • Laith M Kadhum, Ahmad Firdaus*, Mohamad Fadli Zolkiplib, Luay Saferalia, Mohd Faizal Ab Razaka

    Reaction automata direct graph (RADG) is a new technique that uses the automata direct graph method to represent a certain design for encryption and decryption. Jump states are available in the RADG design that enables the encipher to generate different ciphertexts each time from the same plaintext and wherein not a single ciphertext is related to a certain plaintext. This study created a matrix representation for RADG designs that allows the calculation of the number of cases ($F_{Q}$)mathematically possible for any design of the set $Q$. $F_{Q}$ is an important part of the function $mathrm{F}(mathrm{n}, mathrm{m}, lambda)$ that calculates the total number of cases of a certain design for the values $Q, R, sum, psi, J$ and $T$. This paper produces a mathematical equation to calculate $F_{Q}$.

    Keywords: RADG, Cryptography, Block Cipher, Keyless, Graph Theory
  • Awad Kadhim Hammoud, Hatem Nahi Mohaisen, Mohammed Q Mohammed

    In this research paper, we will present how to hide confidential information in a color image randomly using a mathematical equation; by apply this equation to the number of image bytes after converting the image into a digital image, the number of randomly selected bytes depends on the length of the secret message. After specifying the bytes, we include the secret message in those selected bytes utilizing least significant bit (LSB) of steganography, and return the new bytes in the same place in the original image by using the same mathematical equation, after the hiding process using steganography, and then we encrypt the image and send it to the recipient. Several statistical measures applied to the original image, compared with the image after embedding, and after the image encrypted. The results obtained are very good. The statistical measures were used the histogram, mean square error (MSE) and the peak signal to noise ratio (PSNR). The system is designed to perform these processes, which consists of two stages, hiding stage and extract stage. The first stage contains from four steps, the first step of this stage reading the image and converting it to a digital image and make an index on each byte of the image bytes and the application of the mathematical equation to select the bytes by randomly, second step is the process of hiding the secret message in selected bytes and return those bytes to the original locations, third step is the calculation of the statistical measures to determine the rate of confusion after the inclusion of the confidential message, fourth step to encrypt the image of the message carrier and measure the rate of confusion after the encryption and compare with the original image. The extraction process consists of three steps, the first step is to use the private key to decrypt, and the second step is to apply the same mathematical equation to extract the embedded bytes of the confidential message, third step use the same method of hiding the information and extracting the confidential message.

    Keywords: Steganograph, y Encryption, Decryption, Cryptography, Image, LSB, Randomly
  • Delaram Kahrobaei, Marialaura Noce *
    ‎The theory of Engel groups plays an important role in group theory since these groups are closely related to the Burnside problems‎. ‎In this survey we consider several classical and novel algorithmic problems for Engel groups and propose several open problems‎. ‎We study these problems with a view towards applications to cryptography‎.
    Keywords: ‎Engel elements‎, ‎algorithmic problems‎, ‎cryptography
  • Hassan Daghigh *, Ruholla Khodakaramian Gilan
    In this paper, we propose a new certificateless identification scheme based on isogenies between elliptic curves that is a candidate for quantum-resistant problems.  The proposed scheme has the batch verification property which allows verifying more than one identity by executing only a single challenge-response protocol.
    Keywords: Certificateless Identification Scheme, Elliptic Curves, Isogeny, Cryptography, Pairing
  • Mohammad Saleh *, Kamal Darweesh
    Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation, which allow efficient implementations of ECC. In this paper, we improve efficient algorithm for exponentiation on elliptic curves defined over Fp in terms of affine coordinates. The algorithm computes directly from random points P and Q on an elliptic curve, without computing the intermediate points. Moreover, we apply the algorithm to exponentiation on elliptic curves with width-w Mutual Opposite Form (wMOF) and analyze their computational complexity. This algorithm can speed up the wMOF exponentiation of elliptic curves of size 160-bit about (21.7 %) as a result of its implementation with respect to affine coordinates.
    Keywords: cryptography, elliptic curves, affine coordinates
  • Ted Hurley
    This is a survey of some recent applications of abstract algebra, and in particular group rings, to the `communication's areas.
    Keywords: Group rings, Communications, Cryptography
  • بهروز خادم، امیر دانشگر *، سیده فهیمه محبی پور
    در این مقاله به معرفی یک رمز دنباله ای مبتنی بر جای گشت آشوبی می پردازیم که اساسا متشکل از یک نگاشت آشوبی و یک بخش خطی است و به صورت کلمه محور روی یک میدان متناهی طراحی شده است. نشان می دهیم که این سامانه می تواند در دو حالت هم زمان و خودهم زمان عمل کرده و در قالب خودهم زمان دارای گیرنده ای از نوع ‎‎ناظر با ورودی ناشناخته[1] است. ضمن بررسی کارایی این سامانه با توجه به دقت نمایش ماشین محاسباتی، نمونه نرم افزاری آن را پیاده سازی کرده و به عنوان یک ویژگی اصلی نشان می دهیم که خروجی آن حتی با گسسته سازی نگاشت آشوبی، واجد شرایط لازم آماری است. هم چنین به ازای پارامترهای مختلف، این سامانه را با رمزهای دنباله ای مشابه مقایسه می کنیم و به طور اخص نشان می دهیم که در حالت کلید با اندازه کوتاه (حدود 100 بیت) این سامانه نسبت به یکی از سامانه های مشابه با حالت درونی تقریبا برابر، سرعت 10 برابر بیش تر دارد.
    کلید واژگان: رمز جریانی، جای گشت آشوبی، رمزنگاری، هم زمانی
    B. Khadem, A. Daneshgar *, F. Mohebipur
    In this paper we introduce a word-based stream cipher consisting of a chaotic part operating as a chaotic permutation and a linear part, both of which designed on a finite field. We will show that this system can operate in both synchronized and self-synchronized modes. More specifically, we show that in the self-synchronized mode the stream cipher has a receiver operating as an unknown input observer. In addition, we evaluate the statistical uniformity of the output and also show that the system in the self-synchronized mode is much faster and lighter for implementation compared to similar self-synchronized systems with equal key size.
    Keywords: Stream cipher, Chaotic permutation, Cryptography, Synchronization
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال