به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

generating functions

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه generating functions در نشریات گروه علوم پایه
  • Akram Louiz *
    This work aims to propose mathematical procedures that help to deduce the fixed points of a complex function. These fixed points can also be used as a basis to generate new useful complex functions that have for sure at least one fixed point. Hence, this is a good article for specialists in calculus and analysis and even for beginners in mathematics who want to improve their skills in the field of complex numbers.
    Keywords: Complex Analysis, Complex Logarithm, Generating Functions, Uniqueness Of Fixed Points
  • Kalika Prasad, Ritanjali Mohanty *, Munesh Kumari, Hrishikesh Mahato
    In this paper, we introduce a new family of the generalized $k$-Leonardo numbers and study their properties. We investigate the Gaussian Leonardo numbers and associated new families of these Gaussian forms. We obtain combinatorial identities like Binet formula, Cassini's identity, partial sum, etc. in the closed form. Moreover, we give various generating and exponential generating functions.
    Keywords: k-Leonardo numbers, k-Gaussian Leonardo numbers, Binet formula, Generating functions, Partial sum
  • Jelena Đokić, Olga Bodroža-Pantić *, Ksenija Doroslovački
    Motivated to find the answers to some of the questions that have occurred in recent papers dealing with Hamiltonian cycles (abbreviated HCs) in some special classes of grid graphs we started the investigation of spanning unions of cycles, the so-called 2-factors, in these graphs (as a generalizations of HCs). For all the three types of graphs from the title and for any integer $m \geq 2$ we propose an algorithm for obtaining a specially designed (transfer) digraph ${\cal D}^*_m$. The problem of enumeration of 2-factors is reduced to the problem of enumerating oriented walks in this digraph. Computational results we gathered for $m \leq 17$ reveal some interesting properties both for the digraphs ${\cal D}^*_m$ and for the sequences of numbers of 2-factors.We prove some of them for arbitrary $m \geq 2$.
    Keywords: Hamiltonian cycles, generating functions, transfer matrix method, 2-factor
  • Sana Krioui, Ali Boussayoud *, Abdelaziz Bellagha
    In this paper, we introduce novel generating functions of the products of k-Fibonacci numbers, k-Lucas numbers, k-Pell numbers, k-Jacobsthal numbers, k-Mersenne numbers and symmetric functions in multiple variables. Accordingly, the novel generating functions are assigned to the other orthogonal Chebyshev polynomials with symmetric functions in multiple variables.
    Keywords: Symmetric functions, Generating functions, k-Fibonacci numbers, k-Lucas numbers, k-Pell numbers, k-Mersenne numbers, Chebishev polynomials
  • Ahmed Al Gonah *

    In this paper, we introduce a new extension of generalized Laguerre polynomialsof two variable by using the extended Beta function. Some properties of theseextension polynomials such as generating functions, integral representation, recurrencerelations and summation formulae are obtained.

    Keywords: Beta function, generalized Laguerre polynomials, generating functions, summation formulae
  • Souhila Boughaba, Nabiha Saba, Ali Boussayoud*

    ‎In the present paper‎, ‎we introduce the recurrence relations of Vieta‎ ‎Fibonacci‎, ‎Vieta Lucas‎, ‎Vieta Pell and Vieta Pell Lucas polynomials‎. ‎We‎ obtain the generating functions of these polynomials‎, ‎then we give the new‎ ‎generating functions of the products of these polynomials and the products‎ ‎of these polynomials with Gaussian numbers and polynomials‎. ‎These results‎ ‎are based on the relation between Vieta polynomials and Chebyshev‎ ‎polynomials of first and second kinds‎.

    Keywords: Generating functions, Vieta Fibonacci polynomials, Vieta Lucas polynomials, VietaPell polynomials, Gaussian numbers
  • مهری جوانیان*

    ترای ها یکی از کاربردی ترین ساختمان داده ها با ساختار درختی در علوم کامپیوتر هستند. ترای ها، داده های رشته ای را در برگ های درخت ذخیره می کنند. یک نسخه تعمیم یافته ترای، موسوم به ترای سطلی است که در آن هر برگ یا سطل، ظرفیت ذخیره بیش از یک داده را دارد. ترای تصادفی با تعریف یک قاعده رشد تصادفی برای ترای حاصل می شود. تعداد گره های هم نوع که در فاصله یک سان از ریشه یک درخت ریشه دار هستند را نمایه نامند. بررسی نمایه یک درخت، اهمیت زیادی دارد. زیرا بسیاری از پارامترهای درخت ریشه دار را می توان برحسب نمایه آن درخت بیان کرد. در این مقاله به بررسی مجانبی امیدریاضی، واریانس و توزیع حدی هر یک از دو نمایه سطلی و داخلی (تعداد گره های سطلی یا برگ و تعداد گره های داخلی یا غیربرگ که در فاصله یک سان از ریشه هستند) در ترای سطلی تصادفی می پردازیم، وقتی که تعداد داده های ذخیره شده در ترای افزایش یابد. امید ریاضی و واریانس های هر دو نمایه شامل توابعی متناوب هستند و نشان می دهیم آن توابع متناوب ناصفرند که این نکته در مقاله مربوط به نمایه ترای معمولی، به اثبات نرسیده است. هم چنین به بررسی مقدار مجانبی نسبت امید ریاضی های دو نمایه سطلی و داخلی می پردازیم. روش هایی که برای حصول نتایج به کار می بریم، براساس استفاده از پواسونی سازی، تبدیل ملین، معادلات بازگشتی، توابع مولد، تحلیل تکینی و روش نقطه زینی است.

    کلید واژگان: ترای های سطلی، نمایه، پواسونی سازی، تبدیل ملین، معادلات بازگشتی، توابع مولد، تحلیل تکینی، روش نقطه زینی
    Mehri Javanian*
    Introduction

    Tries (from retrieval) are one of the most practical data structures with a tree construction in computer science. Tries store string data in leaves of tree. They are often used to store such data so that future retrieval can be made efficient. For example, tries are widely used in algorithms for automatically correcting words in texts. The number of nodes of the same type, which are at the same distance from the root of a rooted tree, is called profile. The analysis of the profile of a tree is of great importance. Because many of the parameters of a rooted tree can be expressed in terms of its profile. Although profiles represent one of the most fundamental parameters of tries, they have hardly been studied in the past. A generalized version of trie is called bucket trie where each leaf or bucket has a storage capacity of more than one string. Random trie is obtained by defining a random grow rule for trie. We present a detailed study of the limit behavior of the profiles in a random bucket tries.

    Material and methods

    In this paper, the methods we apply to derive recurrences satisfied by the expected profiles and to solve them asymptotically for all possible ranges of the distance from the root, are based on the use of Poissonization, Mellin transform, recurrence equations, generating functions, singularity analysis and saddle-point method.

    Results and discussion

    Here, as the number of stored strings in a random bucket trie increases, we investigate the asymptotic expectation, variance and limiting distribution of each of the two internal and bucket profiles (i.e. the number of bucket nodes or leaves, and the number of internal nodes or non-leaves which are at the same distance from the root) in random bucket tries. Both the expectation and variances of the two profiles contain periodic functions, and we show those periodic functions are not zero that this point has not been proven in the paper on the ordinary trie. Also, we examine the amount of asymptotic ratio of the expectations of the bucket and internal profiles.

    Conclusion

    In this research, we will generalize the most important part of the results for the ordinary tries and also provide a proof for an unproven point in those results. More precisely, the purpose of this article is to study the internal profile (the number of non-leaf nodes at distance  from the root) and bucket profile (the number of buckets at distance  from the root) in an important data structure called random bucket trie (random trie based on  data and maximum capacity of  data per each leaf). By some methods in complex analysis, we have shown that for every  and some fixed constants  and , if  is in the range,then the expectations and variances of both profiles contain non-zero periodic functions (the non-zero property of these periodic functions has not been proved for the ordinary tries up to now). We also provide a graph of those periodic functions for  by MAPLE. Then we study the ratio of the two profiles for  Finally, by finding the asymptotic expansions of  Poisson generating functions for the probability generating functions of profiles and then using the Cauchy integral formula, we obtain the asymptotic expansions for the probability generating functions, which indicate that the limiting distributions of profiles are normal. ./files/site1/files/62/3Abstract.pdf

    Keywords: Bucket tries, Profile, Poissonization, Mellin transform, Recursive equations, Generating functions, Singularity analysis, Saddle point method
  • Charlotte Brennan *, Aubrey Blecher, Arnold Knopfmacher, Toufik Mansour
    We define [k]={1ý,ý2ý,ý3,…,k} to be a (totally ordered) {\em alphabet} on k lettersý. ýA {\em word} w of length n on the alphabet [k] is an element of [k]ný. ýA word can be represented by a bargraph which is a family of column-convex polyominoes whose lower edge lies on the x-axis and in which the height of the i-th column in the bargraph equals the size of the i-th part of the wordý. ýThus these bargraphs have heights which are less than or equal to ký. ýWe consider the site-perimeterý, ýwhich is the number of nearest-neighbour cells outside the boundary of the polyominoý. ýThe generating function that counts the site-perimeter of words is obtained explicitlyý. ýFrom a functional equation we find the average site-perimeter of words of length n over the alphabet [k] ý. ýWe also show how these statistics may be obtained using a direct counting method and obtain the minimum and maximum values of the site-perimetersý.
    Keywords: ?words?, ?bargraphs?, ?site-perimeter?, ?generating functions
  • Deepak C. Pandey, Arun K. Pal
    Priority queues have a great importance in the study of computer communication networks in which different types of traffic require different quality of service standards. The discrete-time non-preemptive priority queuing model with priority jumps is proposed in this paper. On the basis of probability generating functions mean system contents and mean queuing delay characteristics are obtained. The effect of jumping mechanism is analysed which clearly shows that the queuing system provides better results when the fraction of class-1 arrivals in the overall traffic mix is small.
    Keywords: Discrete, time queuing theory, priority scheduling, generating functions, delay analysis
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال