به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

graph clustering

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه graph clustering در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه graph clustering در مقالات مجلات علمی
  • Sara Dehghani, Razieh Mlekhosseini *, Karamollah Bagherifard, S. Hadi Yaghoubian
    Data platforms with large dimensions, despite the opportunities they create, create many computational challenges. One of the problems of data with large dimensions is that most of the time, all the characteristics of the data are not important and vital to finding the knowledge that is hidden in them. These features can have a negative effect on the performance of the classification system. An important technique to overcome this problem is feature selection. During the feature selection process, a subset of primary features is selected by removing irrelevant and redundant features. In this article, a hierarchical algorithm based on the coverage solution will be presented, which selects effective features by using relationships between features and clustering techniques. This new method is named GCPSO, which is based on the optimization algorithm and selects the appropriate features by using the feature clustering technique. The feature clustering method presented in this article is different from previous algorithms. In this method, instead of using traditional clustering models, final clusters are formed by using the graphic structure of features and relationships between features. The UCI database has been used to evaluate the proposed method due to its extensive characteristics. The efficiency of the proposed model has also been compared with the feature selection methods based on the coverage solution that uses evolutionary algorithms in the feature selection process. The obtained results indicate that the proposed method has performed well in terms of choosing the optimal subset and classification accuracy on all data sets and in comparison with other methods.
    Keywords: Feature Selection, Optimization Algorithms, Hierarchical Algorithm, Graph Clustering
  • A. Sadeghian, S. A.L Shahzadeh Fazeli*, S. M. Karbassi

    Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members in each cluster. In this paper, we use hierarchical SVD to cluster graphs with itchr('39')s adjacency matrix. In this algorithm, users can select a range for the number of members in each cluster. The results show in hierarchical SVD algorithm, clustering measurement parameters are more desirable and clusters are as dense as possible. The complexity of this algorithm is less than the complexity of SVD clustering method.

    Keywords: Graph Clustering, Singular Value Decomposition, Hierarchical Clustering, Selectable Clusters Number
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال