به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

hyperparameters

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه hyperparameters در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه hyperparameters در مقالات مجلات علمی
  • Saifuldeen Dheyauldeen Alrefaee*, Salih Muayad Al Bakal, Zakariya Yahya Algamal

    The support vector regression (SVR) technique is considered the most promising and widespread way in the prediction process, and raising the predictive power of this technique and increasing its generalization ability well depends on tunning its hyperparameters. Nature-inspired algorithms are an important and effective tool in optimizing or tuning hyperparameters for SVR models. In this research, one of the algorithms inspired by nature, the black hole algorithm (BHA), by adapting this algorithm to optimize the hyperparameters of SVR, the experimental results, obtained from working on two data sets, showed, the proposed algorithm works better by finding a combination of hyperparameters as compared to the grid search (GS) algorithm, in terms of prediction and running time. In addition, the experimental results show the improvement of the prediction and computational time of the proposed algorithm. This demonstrates BHA's ability to find the best combination of hyperparameters.

    Keywords: Support Vector Regression (SVR), Black Hole Algorithm (BHA), Hyperparameters
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال