به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

imperialist competitive algorithm

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه imperialist competitive algorithm در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه imperialist competitive algorithm در مقالات مجلات علمی
  • H. Dana Mazraeh, K. Parand *, H. Farahani, S.R. Kheradpisheh
    In this paper, we present an improved imperialist competitive algorithm for solving an inverse form of the Huxley equation, which is a nonlinear partial differential equation. To show the effectiveness of our proposed algorithm, we conduct a comparative analysis with the original imperialist competitive algorithm and a genetic algorithm. The improvement suggested in this study makes the original imperialist competitive algorithm a more powerful method for function approximation. The numerical results show that the improved imperialist competitive algorithm is an efficient algorithm for determining the unknown boundary conditions of the Huxley equation and solving the inverse form of nonlinear partial differential equations.
    Keywords: Huxley Equation, Imperialist Competitive Algorithm, Partial Differential Equations, Meta-Heuristic Algorithms, Genetic Algorithm
  • Raheleh Khanduzi *, Asyieh Ebrahimzadeh, Zahra Ebrahimzadeh
    Reservoir sedimentation increases economic cost and overflow of dam water. An optimal control problem (OCP) with singularly perturbed equations of motion is perused in the fields of sediment management during a finite lifespan. Subsequently the OCP is transformed to a nonlinear programming problem by utilizing a collocation approach, and then we employed the imperialist competitive algorithm to improve the execution time and decision. So, the solutions of the optimal control and fast state as well as the maximization of net present value of dam operations are obtained. An illustrative practical study demonstrated that sedimentation management is economically favourable for volume of confined water and total amount in remaining storage and effectiveness of the propounded approach.
    Keywords: Optimal control, Singularly perturbed differential equation, Reservoir sedimentation, Collocation method, Imperialist Competitive Algorithm
  • Ali Abbasi Molai *, Hassan Dana Mazraeh
    The mixed fuzzy relation programming with a nonlinear objective function and two operators of max-product and max-min composition is studied in this paper. Its feasible domain structure is investigated and some simplification procedures are presented to reduce the dimension of the original problem. We intend to modify the assimilation and revolution operators of the imperialist competitive algorithm in order to prevent the generation of infeasible solutions. The modified imperialist competitive algorithm (MICA) is compared with a real-value genetic algorithm to solve the original problem. Several test problems are presented to compare its performance with respect to the performance of the genetic algorithm. Their results show the superiority of the proposed algorithm over the genetic algorithm.
    Keywords: Mixed fuzzy relation equation, Max-product, Max-min operators, Nonlinear optimization, Imperialist competitive algorithm
  • F. Faezy Razi

    In this paper, the investment portfolio is formed based on the data mining algorithm of CHAID on the basis of the risk status criteria. In the next step, the second investment portfolio is created based on the decision rules extracted by the DEA-BCC model. The final portfolio is created through a two-objective mathematical programming model based on the Imperialist Competitive algorithm.

    Keywords: data mining, Classification, DEA Based CHAID, Imperialist Competitive Algorithm, Stock Selection
  • مجید یوسفی خوشبخت
    مساله مسیریابی وسیله نقلیه یکی از مشهورترین مسائل تحقیق در عملیات است که از جایگاه بسیار مهمی در مسائل بهینه سازی ترکیباتی برخوردار است. در این مسئله ناوگانی از وسایل نقلیه با ظرفیت Q از گره ای به نام انبار شروع به حرکت می کنند و بعد از سرویس دهی به مشتریان به آن باز می گردند به شرط آنکه هر کدام از مشتریان را فقط یک بار مورد ملاقات قرار دهند و در هیچ زمانی بیشتر از ظرفیت محدود Q بارگذاری نکنند. هدف کمینه کردن مسیرهای پیموده شده توسط وسایل نقلیه است. این مقاله کاربرد روش رقابت استعماری، را برای حل مساله مسیریابی وسیله نقلیه ارائه می کند. برخلاف روش های دیگر بهینه سازی، این روش از فرآیند اجتماعی-سیاسی جوامع الهام گرفته شده است و از رقابت بین کشورهای استعمارگر و مستعمره برای رسیدن به جواب استفاده می کند. برای آزمایش کارایی الگوریتم، دو دسته مثال استاندارد در نظر گرفته شده و الگوریتم بر روی آن مورد اجرا قرار گرفته است. نتایج محاسباتی روی این مثال ها که دارای اندازه ای از 50 تا 200 می باشند نشان می دهد که الگوریتم پیشنهادی توانسته رقابت خوبی با الگوریتم های مشهور فراابتکاری از نظر کیفیت جواب ها داشته باشد. به علاوه جواب های نزدیک به بهترین جواب های تاکنون بدست آمده برای بیشتر مثال ها بدست آورده شده است.
    کلید واژگان: الگوریتم رقابت استعماری، مسائل  NPتام، مساله مسیریابی وسیله نقلیه
    M. Yousefikhoshbakht
    The Vehicle Routing Problem (VRP), a famous problem of operation research, holds a central place in combinatorial optimization problems. In this problem, a fleet vehicles with Q capacity start to move from depot and return after servicing to customers in which visit only ones each customer and load more than its capacity not at all. The objective is to minimize the number of used vehicles and total distance traversed. This paper presents an application of Imperialist Competitive Algorithm (ICA)) in VRP. Unlike other evolutionary optimization algorithms, ICA is inspired from a socio political process, the competition among imperialists and colonies. Comparison between this method and famous meta-heuristic algorithms shows the effectiveness of the proposed approach. Computational experience with two groups of instances involving from 50 to 200 confirms that proposed algorithm is competitive in compared to the famous meta-heuristic algorithms in terms of the quality of generated solutions. In addition, this algorithm finds closely the best known solutions (BKS) for most of the instances.
    Keywords: Imperialist Competitive Algorithm, NP-Complete, Vehicle Routing Problem
  • Zahra Khorsand, Reza Mortazavi
    With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past decades, many studies have been done in the field of recommender systems, most of which have focused on designing new recommender algorithms based on computational intelligence algorithms. The success of a recommender system besides the quality of the algorithm depends on other factors such as: Sparsity, Cold start and Scalability in the performance of a recommender system, which can affect the quality of the recommendation. Consequently, the main motivation for this research is to providing an effective meta heuristic algorithm based on a combination of imperialist competitive and firefly algorithms using clustering technique. The simulation results of the proposed algorithm on real data sets Move Lens and Film Trust have shown better forecast accuracy in the item recommendation to users than other algorithms presented in subject literature. Also the proposed algorithm can choose appropriate items among the wide range of data and give it to output in a reasonable time.
    Keywords: recommender systems, computational intelligence, clustering, imperialist competitive algorithm, fi refly algorithm
  • F. Ganbary *
    This paper proposes two methods to predict the efficiency of photochemical removal of AY23 by UV/Ag-TiO$_{2}$ process. In this work the potential of the particle swarm optimization (PSO) and imperialist competitive algorithm (ICA) modeling approaches are presented to forecast the photocatalytic removal of AY23 in the presence of Ag-TiO$_{2}$ nanoparticles prepared under desired conditions. To validate the techniques, a total of 100 data are used that randomly splitted in two parts, 80 samples for the training the models and 20 for testing of the models. Experimental results on datasets show that ICA approach is better than PSO approach. Remarkable analysis results reveal that AY23 initial concentration is the most significant factors that influence on the AY23 removal ýefficiency.ý
    Keywords: Nanoparticles, Ag-TiO-2, C. I. Acid Yellow 23, Particle swarm optimization, Imperialist competitive ?algorithm
  • نرگس محمودی دارانی، پیام بصیری، مجید یوسفی خوشبخت
    مساله کلاستر بندی ظرفیت دار (CCP) یک تکنیک داده کاوی برای دسته بندی تعدادی اشیا با ظرفیت مشخص به k کلاستر مجزا است به طوری که ظرفیت هر کلاستر نقض نشود، هر شی دقیقا به یک کلاستر نسبت داده شود و مجموع فاصله های همه مراکز کلاسترها به همه اشیا مینیمم شود. مساله CCP یک مساله –NP سخت است. بنابراین مسائل بزرگ این مساله را نمی توان در یک زمان قابل قبول حل کرد. بنابراین ما علاقمند هستیم که از روش های فراابتکاری برای حل این مساله استفاده کنیم. به همین علت یک روش اصلاحی رقابت استعماری برای حل مساله CCP در این مقاله ارائه می شود. روش پیشنهادی MICA سه فاز اساسی تخصیص تصادفی برای تشکیل دادن کلاسترها، تعویض مراکز کلاسترها برای بهبود بیشتر حل مساله و استفاده از الگوریتم های بهبود محلی برای اصلاح جواب را تکرار می کند. روش پیشنهادی روی چندین مثال استاندارد در ادبیات موضوع مورد ازمایش واقع شده است. نتایج محاسباتی نه تنها نشان دهنده کارایی الگوریتم پیشنهادی است، یلکه دارای رقایت مناسبی برای حل مساله CCP با دیگر الگوریتم های فرا ابتکاری است.
    کلید واژگان: مساله کلاستربندی ظرفیت دار، مسائل  NP سخت، روش رقابت استعماری، روش جایجایی، روش درج
    N. Mahmoodi Darani, P. Bassiri, M. Yousefikhoshbakht
    The capacitated clustering problem (CCP) is a data mining technique utilized to categorize a number of objects with known demands into k distinct clusters such that the capacity of each cluster is not violated, every object is allocated to exactly one cluster and sum of distances from all cluster centers to all other nodes is minimized. The CCP is an NP-hard combinatorial optimization problem. Therefore, practical large-scale instances of this problem cannot be solved by exact solution methodologies within acceptable computational time. Our interest was therefore focused on meta-heuristic solution approaches. For this reason, a modified imperialist competitive algorithm (MICA) is proposed for the CCP In this paper. The proposed MICA iterates steps between three basic phases, i.e., the random assignment phase to form clusters, the seed relocation phase to find a better median, and the local improvement phase to make a revision of the solution. The proposed algorithm is tested on several standard instances available from the literature. The computational results confirm the effectiveness of the presented algorithm and show that the proposed algorithm is competitive with other meta-heuristic algorithms for solving the CCP.
    Keywords: Capacitated Clustering Problem, NP, hard Problems, Imperialist Competitive Algorithm, Swap Move, Insert Move
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال