به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

multi layer perceptron

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه multi layer perceptron در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه multi layer perceptron در مقالات مجلات علمی
  • Mostafa Sohouli Vahed, Mohammadali Aghaei *, Fariborz Avazzadeh Fath, Ali Pirzad

    Many researchers proved that hybrid models have better results in comparison with independent models. A combination of different methods could enhance the accuracy of time series prediction. Hence, this research used the hybrid of three methods of chaos theory, multi-layer perceptron and metaheuristic algorithm to increase the power of the model forecasting. Artificial neural networks have properly considered complex nonlinear relations and are good comprehensive approximators. Multi-objective evolutionary algorithms such as multi-objective particle swarm optimization are good at solving multi-objective optimization issues. This algorithm organized the combination of parent and children populations by elitist strategy, decreased the messy comparing factors to improve the solution variety and avoided to use of niche factors. Chaos theory controls the complexities of stochastic systems. So, this research offers Tehran Stock Exchange Index (TSEI) prediction by a hybrid model of chaos theory, multi-layer perceptron and metaheuristic algorithm. The results show that in perceptron-based mode, RMSE measures are gradually increased in all intervals. The continuous decrease of RMSE shows that the perceptron-based model could show consistency with the whole data flow. This matter could offer a better learning and consistency process by perceptron-based models to predict stock prices, as this type of learning could apply more experiences for forecasting future behaviour in order to change the system content.

    Keywords: Financial Timeseries, Chaos Theory, Multi-Layer Perceptron, Metaheuristic Algorithm
  • Mohammad Alyannezhadi *, Ashkan Fakhri, Farzan Afshari
    This paper aims to present a useful method for magnifying images, for which it is necessary to group the pixels and define the borders. In the proposed method, images are first partitioned using suitable segmentation algorithms and then artificial neural networks (ANNs) are applied to magnify each segment individually. In the ANNs applied, training is performed using, as input, a down-sampled form of the same image to be magnified. This type of training results in a high quality zoom in each segment since the pixels in an individual segment have very close features. Evaluation results on several images verifies the higher efficiency of the proposed method than other recently developed image zooming methods.
    Keywords: Artificial Neural Network, machine learning, Multi-layer perceptron, Image processing, Image Zooming, Image Segmentation
  • A. Kalhor, B. N. Aarabi, C. Lucas, B. Tarvirdizadeh
    In this paper, we introduce a Takagi-Sugeno (TS) fuzzy model which is derived from a typical Multi-Layer Perceptron Neural Network (MLP NN). At first, it is shown that the considered MLP NN can be interpreted as a variety of TS fuzzy model. It is discussed that the utilized Membership Function (MF) in such TS fuzzy model, despite its flexible structure, has some major restrictions. After modifying the MF, we introduce a TS fuzzy model whose MFs are tunable near and far from focal points, separately. To identify such TS fuzzy model, an incremental learning algorithm, based on an efficient space partitioning technique, is proposed. Through an illustrative example, the methodology of the learning algorithm is explained. Next, through two case studies: approximation of a nonlinear function for a sun sensor and identification of a pH neutralization process, the superiority of the introduced TS fuzzy model in comparison to some other TS fuzzy models and MLP NN is shown.
    Keywords: Takagi, Sugeno fuzzy model, Multi layer perceptron, Tunable membership functions, Nonlinear function approximation, pH neutralization process
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال