به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

scaling function

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه scaling function در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه scaling function در مقالات مجلات علمی
  • Mohammad Bhat *, Aamir Dar
    A generalization of Mallat’s classical multiresolution analysis, based on the theory of spectral pairs, was considered in two articles by Gabardo and Nashed. In this setting, the associated translation set is no longer a discrete subgroup of R but a spectrum associated with a certain one-dimensional spectral pair and the associated dilation is an even positive integer related to the given spectral pair. In this paper, we are interested in the dual wavelets whose construction depends on nonuniform multiresolution analysis associated with linear canonical transform. Here we prove that if the translates of the scaling functions of two multiresolution analyses in linear canonical transform settings are biorthogonal, so are the wavelet families which are associated with them. Under mild assumptions on the scaling functions and the wavelets, we also show that the wavelets generate Riesz bases
    Keywords: Nonuniform, Biorthogonal, Scaling function, Linear Canonical Transform
  • Azad Kasnazani *, Amjad Alipanah
    In this paper, we proposed an effective method based on the scaling function of Daubechies wavelets for the solution of the brachistochrone problem. An analytic technique for solving the integral of Daubechies scaling functions on dyadic intervals is investigated and these integrals are used to reduce the brachistochrone problem into algebraic equations. The error estimate for the brachistochrone problem is proposed and the numerical results are given to verify the effectiveness of our method.
    Keywords: Daubechies wavelets, scaling function, brachistochrone problem, Error analysis, numerical results
  • Liu Zhanwei, Xiaomin Mu, Guochang Wu
    In this paper, we characterize multiresolution analysis(MRA) Parseval frame multiwavelets in L^2(R^d) with matrix dilations of the form (D f)(x) = sqrt{2}f (Ax), where A is an arbitrary expanding dtimes d matrix with integer coefficients, such that |detA| =2. We study a class of generalized low pass matrix filters that allow us to define (and construct) the subclass of MRA tight frame multiwavelets. This leads us to an associated class of generalized scaling functions that are not necessarily obtained from a multiresolution analysis. We also investigate several properties of these classes of generalized multiwavelets, scaling functions, matrix filters and give some characterizations about them. Finally, we describe the matrix multipliers classes associated with Parseval frame multiwavelets(PFMWs) in L^2(R^d) and give an example to prove our theory.
    Keywords: frame, Matrix lter, Pseudo, scaling function, MRA Parseval frame multiwavelets, Matrix multiwavelets multiplier
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال