به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

sem algorithm

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه sem algorithm در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه sem algorithm در مقالات مجلات علمی
  • معصومه محمدی منفرد، محمدحسن بهزادی*، رضا عربی بلاغی

    در این مقاله به مسیله‎ براوردیابی پارامترهای نامعلوم وقتی داده های طول عمر دارای توزیع پواسن-نمایی تحت طرح سانسور هیبرید فزاینده نوع دو هستند‏، در حالت کلاسیک و بیز می پردازیم. براوردگرهای نقطه ای و فاصله ای را تحت تقریب های کلاسیک و بیزی محاسبه می کنیم. برای محاسبه ی براوردهای نقطه ای، برآوردگرهای ماکزیمم درستنمایی را با استفاده از دو الگوریتم امیدریاضی گرفتن-ماکزیمم کردن و امیدریاضی گرفتن-ماکزیمم کردن تصادفی تحت تقریب کلاسیک بدست می آوریم. این الگوریتم ها به راحتی اجرا می شوند. همچنین برآوردهای بیزی را با بکار بردن روش تقریب لیندلی و تکنیک نمونه گیری ازنقاط مهم تحت پیشین های آگاهی بخش و ناآگاهی بخش با استفاده از تابع زیان های مربع خطا، آنتروپی و لاینکس محاسبه می کنیم. برآوردگرهای بازه ای کلاسیک و بیزی مرتبط، با در نظر گرفتن ماتریس اطلاع فیشر و روش چن-شایو محاسبه می شود. مجموعه ی داده های واقعی را آنالیز می کنیم و مطالعات شبیه سازی مونت کارلو برای مقایسه ی روش های پیشنهادی مختلف، انجام می شود.‎ سرانجام نتیجه گیری و پیشنهادات را ارایه می کنیم .

    کلید واژگان: براورد بیز، الگوریتم EM، الگوریتم SEM، تقریب لیندلی، شبیه سازی مونت کارلو
    Masoumeh Mohammadi Monfared, MohammadHassan Behzadi *, Reza Arabi Belaghi

    In this paper, the problem of estimating unknown parameters is investigated when lifetime data following Poisson-exponential distribution under classical and Bayesian frameworks based on progressively type-II hybrid censored data. We compute point and associated interval estimates under classical and Bayesian approaches. For point estimates in the problem of estimation, we compute maximum likelihood estimators of model using Expectation-Maximization (EM) and Stochastic Expectation-Maximization (SEM) algorithms under classical approach, these algorithms are easily implemented. We compute Bayes estimates with the help of Lindley and importance sampling technique under informative and non-informative priors using different loss functions namely squared error, LINEX as well as general entropy in Bayesian framework. The associated interval estimates are obtained using the Fisher information matrix and Chen and Shao method respectively under classical and Bayesian approaches. We analysis real data set, and conduct Monte Carlo simulation study for the comparison of various proposed methods. Finally, we present a conclusion.

    Keywords: Bayesian Estimation, EM algorithm, SEM algorithm, Lindely approximation, Monte Carlo simulation
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال