به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

supervised learning algorithms

در نشریات گروه ریاضی
تکرار جستجوی کلیدواژه supervised learning algorithms در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه supervised learning algorithms در مقالات مجلات علمی
  • Hala Muhanad Yousif, Dhahir Abdulhade Abdulah

    Human Activity Recognition (HAR) systems used in healthcare have attracted much attention in recent years. A HAR system consists of a wearable device with sensors. HAR has been used to suggest several machine learning (ML) algorithms. However, only a few research have looked at how to evaluate HAR to identify physical activities. Nevertheless, obtaining an explanation for their performances is complicated by two factors: the lack of implementation specifics and the lack of a baseline evaluation setup that makes comparisons unfair. For establishing effective and efficient ML–HAR of computers and networks, this study uses ten common unsupervised and supervised ML algorithms. The decision tree (DT), artificial neural network (ANN), naive Bayes (NB), k-nearest neighbor (k-NN), support vector machine (SVM), random forest (RF), and XGBoost (XGB) algorithms are among the supervised ML algorithms, while the k-means, expectation-maximization (EM), and self-organizing maps (SOM) algorithms are among the unsupervised ML algorithms. Multiple algorithms models are presented, and the turning and training parameters in ML (DT, ANN, NB, KNN, SVM, RF, XGB) of each method are investigated in order to obtain the best classifier assessment. Differ from earlier research, this research measures the true negative and positive rates, precision, accuracy, F-Score as well as recall of 81 ML-HAR models to assess their performance. Because time complexity is a significant element in HAR, the ML-HAR models training and testing time are also taken into account when evaluating their performance efficiency. The mobile health care (M\_HEALTH CARE) dataset, which includes real-world network activity, is used to test the ML-HAR models. In general, the XGB outperforms the DT-HAR, k-NN-HAR, and NB-HAR models in recognizing human activities, with recall, precision, and f-scores of 0.99, 0.99, and 0.99 for each, respectively, for health care mobile recognition.

    Keywords: Machine Learning, Artificial Neural Network, Benchmarking, Supervised Learning Algorithms, k-means
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال