جستجوی مقالات مرتبط با کلیدواژه « character degree » در نشریات گروه « ریاضی »
تکرار جستجوی کلیدواژه « character degree » در نشریات گروه « علوم پایه »-
Denote by $\widehat{p_n}$, the largest prime among the primitive prime divisors of $ 2^{2n+1}-1 $ and $ 2^{2(4n+2)}-1 $, where $n\in {\Bbb N}$. In this paper, we prove that if $ q=2^{2n+1}\geq8 $ and $\alpha \leq \widehat{p_n}$, then the direct product of $ \alpha $ copies of $ {\rm Sz}(q)$ is uniquely determined by its complex group algebra.
Keywords: Character degree, Order, Suzuki groups, Complex group algebr} -
Let G be a finite group and cd∗ (G) be the set of nonlinear irreducible character degrees of G. Suppose that ρ(G) denotes the set of primes dividing some element of cd∗ (G). The bipartite divisor graph for the set of character degrees which is denoted by B(G), is a bipartite graph whose vertices are the disjoint union of ρ(G) and cd∗ (G), and a vertex p ∈ ρ(G) is connected to a vertex a ∈ cd∗ (G) if and only if p|a. In this paper, we investigate the structure of a group G whose graph B(G) has five vertices. Especially we show that all these groups are solvable.
Keywords: Bipartite divisor graph, Character degree, Solvable group} -
Let $G$ be a finite group and $cd(G)$ denote the character degree set for $G$. The prime graph $DG$ is a simple graph whose vertex set consists of prime divisors of elements in $cd(G)$, denoted $rho(G)$. Two primes $p,qin rho(G)$ are adjacent in $DG$ if and only if $pq|a$ for some $ain cd(G)$. We determine which simple 4-regular graphs occur as prime graphs for some finite nonsolvable group.
Keywords: Nonsolvable group, character, character degree, graph, prime graph} -
In a previous paper, the second author established that, given finite fields $F < E$ and certain subgroups $C leq E^times$, there is a Galois connection between the intermediate field lattice ${L mid F leq L leq E}$ and $C$''s subgroup lattice. Based on the Galois connection, the paper then calculated the irreducible, complex character degrees of the semi-direct product $C rtimes {Gal} (E/F)$. However, the analysis when $|F|$ is a Mersenne prime is more complicated, so certain cases were omitted from that paper.The present exposition, which is a reworking of the previous article, provides a uniform analysis over all the families, including the previously undetermined ones. In the group $Crtimes{rm Gal(E/F)}$, we use the Galois connection to calculate stabilizers of linear characters, and these stabilizers determine the full character degree set. This is shown for each subgroup $Cleq E^times$ which satisfies the condition that every prime dividing $|E^times: C|$ divides $|F^times|$.Keywords: Galois correspondence, lattice, character degree, finite field}
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.