به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

back-propagation neural network

در نشریات گروه زمین شناسی
تکرار جستجوی کلیدواژه back-propagation neural network در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه back-propagation neural network در مقالات مجلات علمی
  • Shahoo Maleki, Hamid Reza Ramazi*, Mohammadjavad Ameri Shahrabi

    Having information about Young’s modulus is extremely essential for characterization of the hydrocarbon reservoirs. This property can be conventionally determined by core sample data analysis in laboratory that is time-consuming, critically expensive and discontinuous. Therefore, many researchers have always been looking for suitable methods to estimate Young’s modulus with acceptable accuracy. The current research aims to create an advanced, precise model for estimating Young’s modulus by utilizing backpropagation neural network (BPNN), support vector regression (SVR), and gene expression programming (GEP) methods based on the conventional well logs data. Thus, after determination of dynamic Young’s modulus, some empirical correlations are proposed for estimation of static Young’s modulus. The results demonstrate that the Jambunathan equation is more appropriate than other empirical models. Finally, artificial intelligence (AI) techniques were run, and their results indicated that all techniques (BPNN (R=0.999), SVR (R=0.997) and GEP (R=0.996)) deliver highly accurate values of static Young’s modulus. Comparing these results shows that the BPNN technique is relatively more precise than other ones. Although, in this research, the GEP technique was not more accurate than BPNN and SVM techniques, it provides a new nonlinear equation that can be used for estimating Young’s modulus in other similar fields. As a new finding, it was found that a simultaneous combination of the Jambunathan equation and BPNN technique delivers highly accurate results. Hence, it can be applied to slim down the cost of exploratory operations for determination of the Young’s modulus of limestone rocks.

    Keywords: Gene Expression Programming, Young’S Modulus, Well Logs Data, Back-Propagation Neural Network, Support Vectormachine, Core Sample Data
  • Maleki Sh, Moradzadeh A., Ghavami R., Sadeghzadeh F.
    DT log is one of the most frequently used wireline logs to determine compression wave velocity. This log is commonly used to gain insight into the elastic and petrophysical parameters of reservoir rocks. Acquisition of DT log is، however، a very expensive and time consuming task. Thus prediction of this log by any means can be a great help by decreasing the amount of money that needs to be allocated for acquisition. Support vector machine (SVM) is one of the best artificial intelligence techniques proven to be a reliable method in the prediction of various real world problems. The aim of this paper is to use SVM to predict the DT log data of a well located in the southern oilfields of Iran. By comparing the results of SVM with those obtained by a Back Propagation Neural Network (BPNN) we were able to verify the accuracy of SVM in the prediction of P-wave velocity. Hence، this method is recommended as a cost effective tool in the prediction of P- wave velocity
    Keywords: Prediction, DT Wireline Log, Back Propagation Neural Network, Support Vector Machine, Southern Oil Field
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال