جستجوی مقالات مرتبط با کلیدواژه
تکرار جستجوی کلیدواژه learning algorithm در نشریات گروه علوم پایه
learning algorithm
در نشریات گروه زمین شناسی
تکرار جستجوی کلیدواژه learning algorithm در مقالات مجلات علمی
-
نشریه علوم زمین، پیاپی 81 (پاییز 1390)، صص 31 -36در این پژوهش، برآورد الگوریتم های یادگیری مختلف در شبکه عصبی برای برآورد عیار در سامانه مس پورفیری سوناجیل مقایسه شده است. هدف این پژوهش، بهینه کردن ساختار شبکه مورد استفاده و ارائه روند بهینه سازی ساختاری آن برای برآورد عیار مس برای شناسایی بهتر منطقه است. بر این اساس، دوازده الگوریتم یادگیری پس انتشار خطا برای این هدف بررسی شدند. نتایج مطالعه بیانگر آن است که در الگوریتم های مورد استفاده دو الگوریتم LM و BFG بهترین کارایی را دارند. دلایل برای نشان دادن کارایی تقریبا مساوی الگوریتم های یادگیری دیگر به صورت کمی بیان شده است. متغیرهای ورودی شبکه، موقعیت طول و عرض جغرافیایی و خروجی آن، عیار کانسار در آن مختصات است. همچنین برای به دست آوردن ساختار بهینه شبکه مورد نظر از شبکه های با تعداد لایه های مختلف استفاده شد که در پایان شبکه با تعداد دوازده نرون مورد استفاده قرار گرفت. برای بررسی تاثیر شکل عادی کردن داده ها از شکل های مختلف داده ها استفاده شد که داده های عادی شده در بازه]1 0 [نتایج بهتری داشتند. در پایان برای بهینه تر شدن شبکه همچنین از توابع مختلف انتقال در این شبکه استفاده شد که تابع انتقال تانژانت سیگموییدی با کمترین خطای ممکن همراه بود و این تابع به عنوان تابع بهینه برگزیده شد. با در نظر گرفتن شرایط بهینه مقدار R2 برای شبکه 946/0 به دست آمد که نویدگر استفاده از شبکه های عصبی با ساختار بهینه برای بهبود شرایط برآورد است.
کلید واژگان: شبکه عصبی، ساختار بهینه، برآورد عیار، الگوی یادگیری، سوناجیلIn the present research, comparative evaluation of various learning algorithms in neural network modeling was performed for ore grade estimation in Sonjail porphyry copper deposit. The main goal of the following investigation would be optimizing the network architecture and to present an architectural optimization trend to better performing the copper grade estimation within the region. Therefore, 12 algorithms were investigated back propagation learning algorithms. Based on this research it is merged that by applying the LM and BFG algorithms, there would be the best performance. The reasons why the other algorithms have the same performance would be presented within the paper as well. The input parameters are coordinates and the outputs are the copper grades for each specified point. To obtain the optimal structure, a network with different layers has been applied, which it has acquired 12 neurons within one layer. To investigate the data normal shapes, various normal shape has been acquired in the [0 1], which could merged the best results. Finally to get the best network optimizations several transfer functions have been applied, and the sigmoid transfer function illustrated least error when the transfer function is selected. Considering the optimal conditions, the R2 value has merged 0.946 for network which could be the result showing that the optimal network architecture causes estimation improvement.Keywords: Neural network, Optimal architecture, Grade estimation, Learning algorithm, Sonajil
نکته
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.