به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

principal components regression

در نشریات گروه زمین شناسی
تکرار جستجوی کلیدواژه principal components regression در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه principal components regression در مقالات مجلات علمی
  • مریم مختاری*

    مقاومت تک محوری و مدول الاستیسیته سنگ ها در مهندسی ژیوتکنیک، مکانیک سنگ و مهندسی زمین شناسی، جزو پارامترهای حیاتی در طراحی می باشد. بدین منظور از دو روش رگرسیون اجزا اصلی و روش هیبریدی الگوریتم بهینه سازی ذرات بر مبنای ماشین های برداری رگرسیون استفاده شده است. پارامترهای استفاده شده در این مدلسازی شامل سرعت موج فشاری، نسبت پواسون و تخلخل دینامیکی می باشد. مدل سازی بر مبنای نتایج حاصل از آزمایش مقاومت تک محوری فشاری و التراسونیک بر روی 115 نمونه سنگ آهک انجام شده است. دقت مدل های توسعه یافته با استفاده از شاخص های آماری شامل ضریب همبستگی، مربع متوسط خطای نرمال شده و متوسط خطای مطلق مورد بررسی قرار گرفت. نتایج بدست آمده نشان داد که دقت هر دو روش در تخمین پارامترهای هدف بالا می باشد. مقدار الگوریتم بهینه سازی ذرات به منظور تعیین بهینه حالت محدودیت جعبه و حالت اپسیلون مورد استفاده قرار گرفت. مقدار ضریب همبستگی، مربع متوسط خطای نرمال شده و متوسط خطای برای محموعه آموزش در مدل سازی مقاومت تک محوری با روش رگرسیون اجزا اصلی به ترتیب 0.78، 22.45 و 0.363 بدست آمد. مقادیر حاصل برای مجموعه تست در این حالت به ترتیب 0.76، 22.51 و 0.357 بدست آمده است. مقدار ضریب همبستگی، مربع متوسط خطای نرمال شده و متوسط خطای برای محموعه آموزش در مدل سازی مقاومت مدول الاستیسیته با روش رگرسیون اجزا اصلی به ترتیب 0.71، 34.23 و 0.421 بدست آمد. مقادیر حاصل برای مجموعه تست در این حالت به ترتیب 0.7، 34.23 و 0.43 بدست آمده است.مدل سازی در روش رگرسیون ماشین برداری به استفاده از چهار تابع کرنل خطی، درجه دوم، مکعبی و گوسین انجام شد. نتایج بدست آمده نشان می دهد تابع کرنل درجه دوم نتایج بهتری در تخمین مقاومت فشاری تک محوری و مدول الاستیسیته ارایه می کند. مقدار ضریب همبستگی، مربع متوسط خطای نرمال شده و متوسط خطای برای محموعه آموزش در مدل سازی مقاومت تک محوری با استفاده از تابع کرنل در ماشین های بردار پشتیبان به ترتیب 0.83، 16.98 و 0.329 بدست آمد. مقادیر حاصل برای مجموعه تست در این حالت به ترتیب 0.76، 22.15 و 0.296 بدست آمده است. مقدار ضریب همبستگی، مربع متوسط خطای نرمال شده و متوسط خطای برای محموعه آموزش در مدل سازی مقاومت مدول الاستیسیته با روش رگرسیون اجزا اصلی به ترتیب 0.73، 29.11و 0.45 بدست آمد. مقادیر حاصل برای مجموعه تست در این حالت به ترتیب 0.7 ، 25.67 و 0272 بدست آمده است.مدل سازی در روش رگرسیون ماشین برداری به استفاده از چهار تابع کرنل خطی، درجه دوم، مکعبی و گوسین انجام شد. به علاوه، مقایسه نتایج حاصل از رگرسیون اجزا اصلی و ماشین برداری رگرسیون نشان می دهد که ماشین برداری رگرسیون نتایج بهتری را ارایه می نماید.

    کلید واژگان: مقاومت فشاری تک محوری، مدول یانگ دینامیکی، ماشینبرداری پشتیبان، رگرسیون اجزا اصلی، آزمایش التراسونیک
    Maryam Mokhtari*

    In geotechnical engineering, rock mechanics and engineering geology, depending on the project design, uniaxial strength and static Youngchr('39')s modulus of rocks are of vital importance. The direct determination of the aforementioned parameters in the laboratory, however, requires intact and high-quality cores and preparation of their specimens have some limitations. Moreover, performing these tests is time-consuming and costly. Therefore, in this study, it was tried to precisely predict the desirable parameters using physical characteristics and ultrasonic tests. To do so, two methods, i.e. principal components regression and support vector regression, were employed. The parameters used in modelling included density, P- wave velocity, dynamic Poisson’s ratio and porosity. Accordingly, the experimental results conducted on 115 limestone rock samples, including uniaxial compressive and ultrasonic tests, were used and the desired parameters in the modelling were extracted using the laboratory results. By means of correlation coefficient (R2), normalized mean square error (NMSE) and Mean absolute error (MAE), the developed models were validated and their accuracy were evaluated. The obtained results showed that both methods could estimate the target parameters with high accuracy. In support vector regression, Particle Swarm Optimization method was used for determining optimal values of box constraint mode and epsilon mode, and the modelling was conducted using four kernel functions, including linear, quadratic, cubic and Gaussian. Here, the quadratic kernel function yielded the best result for UCS and cubic kernel function yielded the best result for Es. In addition, comparing the results of the principal components regression and the support vector regression indicated that the latter outperformed the former.

    Keywords: Uniaxial compressive strength, Static young’s module, Support vector regression, Principal components regression, Ultrasonic test
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال