به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

support vector regression

در نشریات گروه زمین شناسی
تکرار جستجوی کلیدواژه support vector regression در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه support vector regression در مقالات مجلات علمی
  • مریم مختاری*

    مقاومت تک محوری و مدول الاستیسیته سنگ ها در مهندسی ژیوتکنیک، مکانیک سنگ و مهندسی زمین شناسی، جزو پارامترهای حیاتی در طراحی می باشد. بدین منظور از دو روش رگرسیون اجزا اصلی و روش هیبریدی الگوریتم بهینه سازی ذرات بر مبنای ماشین های برداری رگرسیون استفاده شده است. پارامترهای استفاده شده در این مدلسازی شامل سرعت موج فشاری، نسبت پواسون و تخلخل دینامیکی می باشد. مدل سازی بر مبنای نتایج حاصل از آزمایش مقاومت تک محوری فشاری و التراسونیک بر روی 115 نمونه سنگ آهک انجام شده است. دقت مدل های توسعه یافته با استفاده از شاخص های آماری شامل ضریب همبستگی، مربع متوسط خطای نرمال شده و متوسط خطای مطلق مورد بررسی قرار گرفت. نتایج بدست آمده نشان داد که دقت هر دو روش در تخمین پارامترهای هدف بالا می باشد. مقدار الگوریتم بهینه سازی ذرات به منظور تعیین بهینه حالت محدودیت جعبه و حالت اپسیلون مورد استفاده قرار گرفت. مقدار ضریب همبستگی، مربع متوسط خطای نرمال شده و متوسط خطای برای محموعه آموزش در مدل سازی مقاومت تک محوری با روش رگرسیون اجزا اصلی به ترتیب 0.78، 22.45 و 0.363 بدست آمد. مقادیر حاصل برای مجموعه تست در این حالت به ترتیب 0.76، 22.51 و 0.357 بدست آمده است. مقدار ضریب همبستگی، مربع متوسط خطای نرمال شده و متوسط خطای برای محموعه آموزش در مدل سازی مقاومت مدول الاستیسیته با روش رگرسیون اجزا اصلی به ترتیب 0.71، 34.23 و 0.421 بدست آمد. مقادیر حاصل برای مجموعه تست در این حالت به ترتیب 0.7، 34.23 و 0.43 بدست آمده است.مدل سازی در روش رگرسیون ماشین برداری به استفاده از چهار تابع کرنل خطی، درجه دوم، مکعبی و گوسین انجام شد. نتایج بدست آمده نشان می دهد تابع کرنل درجه دوم نتایج بهتری در تخمین مقاومت فشاری تک محوری و مدول الاستیسیته ارایه می کند. مقدار ضریب همبستگی، مربع متوسط خطای نرمال شده و متوسط خطای برای محموعه آموزش در مدل سازی مقاومت تک محوری با استفاده از تابع کرنل در ماشین های بردار پشتیبان به ترتیب 0.83، 16.98 و 0.329 بدست آمد. مقادیر حاصل برای مجموعه تست در این حالت به ترتیب 0.76، 22.15 و 0.296 بدست آمده است. مقدار ضریب همبستگی، مربع متوسط خطای نرمال شده و متوسط خطای برای محموعه آموزش در مدل سازی مقاومت مدول الاستیسیته با روش رگرسیون اجزا اصلی به ترتیب 0.73، 29.11و 0.45 بدست آمد. مقادیر حاصل برای مجموعه تست در این حالت به ترتیب 0.7 ، 25.67 و 0272 بدست آمده است.مدل سازی در روش رگرسیون ماشین برداری به استفاده از چهار تابع کرنل خطی، درجه دوم، مکعبی و گوسین انجام شد. به علاوه، مقایسه نتایج حاصل از رگرسیون اجزا اصلی و ماشین برداری رگرسیون نشان می دهد که ماشین برداری رگرسیون نتایج بهتری را ارایه می نماید.

    کلید واژگان: مقاومت فشاری تک محوری، مدول یانگ دینامیکی، ماشینبرداری پشتیبان، رگرسیون اجزا اصلی، آزمایش التراسونیک
    Maryam Mokhtari*

    In geotechnical engineering, rock mechanics and engineering geology, depending on the project design, uniaxial strength and static Youngchr('39')s modulus of rocks are of vital importance. The direct determination of the aforementioned parameters in the laboratory, however, requires intact and high-quality cores and preparation of their specimens have some limitations. Moreover, performing these tests is time-consuming and costly. Therefore, in this study, it was tried to precisely predict the desirable parameters using physical characteristics and ultrasonic tests. To do so, two methods, i.e. principal components regression and support vector regression, were employed. The parameters used in modelling included density, P- wave velocity, dynamic Poisson’s ratio and porosity. Accordingly, the experimental results conducted on 115 limestone rock samples, including uniaxial compressive and ultrasonic tests, were used and the desired parameters in the modelling were extracted using the laboratory results. By means of correlation coefficient (R2), normalized mean square error (NMSE) and Mean absolute error (MAE), the developed models were validated and their accuracy were evaluated. The obtained results showed that both methods could estimate the target parameters with high accuracy. In support vector regression, Particle Swarm Optimization method was used for determining optimal values of box constraint mode and epsilon mode, and the modelling was conducted using four kernel functions, including linear, quadratic, cubic and Gaussian. Here, the quadratic kernel function yielded the best result for UCS and cubic kernel function yielded the best result for Es. In addition, comparing the results of the principal components regression and the support vector regression indicated that the latter outperformed the former.

    Keywords: Uniaxial compressive strength, Static young’s module, Support vector regression, Principal components regression, Ultrasonic test
  • احسن لیثی، حسین خیرالهی، نوید شادمنامن*

    تخمین سرعت امواج فشارشی و برشی در صنعت نفت از اهمیت بیشتری برخوردار است. برخلاف سرعت موج تراکمی، سرعت موج برشی در تمامی چاه های یک میدان به دلیل تحمیل هزینه های بیشتر اندازه گیری نمی شود. بنابراین در صنعت نفت و گاز استفاده از روشی که با هزینه کمتر و دقت بیشتر سرعت موج برشی را تخمین بزند، اجتناب ناپذیر است. در این مطالعه، ابتدا برای تخمین سرعت موج برشی در یک چاه، همبستگی سایر نگاره های موجود در آن چاه (یعنی نگاره های صوتی، چگالی، تخلخل نوترون، مقاومت، پرتو گاما، حجم دولومیت، حجم کوارتز و اشباع آب) با سرعت موج برشی مورد بررسی قرار گرفت و مشخص شد که نگاره های سرعت موج تراکمی، چگالی، حجم دولومیت و حجم کوارتز همبستگی بیشتری با سرعت موج برشی دارند و این نگاره ها به عنوان ورودی برای تخمین سرعت موج برشی با استفاده از روش های مختلف انتخاب شدند. سپس از میان روش های مختلف، روشی که بهترین تطابق را با داده های واقعی موج برشی داشته باشد، به عنوان روش بهینه انتخاب شده و از این روش برای تخمین سرعت موج برشی در سایر چاه ها که فاقد نگاره موج برشی هستند استفاده می گردد. در این مقاله از روش رگرسیون چندگانه و الگوریتم های یادگیری ماشین (رگرسیون بردار پشتیبان، شبکه عصبی فازی تطبیقی و شبکه عصبی عمیق) برای تخمین سرعت موج برشی استفاده شد. نتایج ما نشان می دهند که روش شبکه عصبی عمیق با داشتن 97 درصد همبستگی بین داده های سرعت موج برشی واقعی و تخمینی نسبت به سایر روش ها جواب بهتری ارایه داده است. بنابراین برای تخمین سرعت موج برشی در سایر چاه ها که فاقد نگاره موج برشی هستند از روش پیشنهادشده در این مطالعه (شبکه عصبی عمیق) استفاده شد. برای صحت سنجی نتایج حاصل از شبکه عصبی عمیق در چاه های فاقد سرعت موج برشی، از مدل تجربی کاستاگنا استفاده شد که نتایج نشان دهنده تطابق خوبی میان این دو مدل است.

    کلید واژگان: سرعت موج برشی، رگرسیون چندگانه، رگرسیون بردار پشتیبان، شبکه عصبی فازی تطبیقی، شبکه عصبی عمیق
    Ahsan Leisi, Hossein Kheirollahi, Navid Shad Manaman *

    Estimation of compressional and shear wave velocities is very important in the oil and gas industry. Unlike compressional wave velocity, shear wave velocity is not measured in all wells of a field due to its higher costs. Therefore, using an alternative method that estimates the shear wave velocity at a lower cost and with acceptable accuracy is inevitable. In this study, to estimate the response variable in a well, the correlation of several logs in that well (i.e., acoustic logs, density, neutron porosity, resistivity, gamma ray, dolomite volume, quartz volume, and water saturation) with target log investigated. It was found that the compressional wave velocity, density, dolomite volume, and quartz volume logs are more correlated with shear wave velocity. Therefore, these logs were selected as input features for estimating shear wave velocity using different approaches. In the next step, among the various methods, The estimated values obtained from a method that has the best match with the actual shear wave velocity is introduced as the optimal model. Afterward, it is performed to estimate the shear wave velocity in other wells that do not have a shear wave velocity log. In this paper, multiple regression methods and machine learning algorithms (support vector regression, adaptive Neuro-fuzzy inference system, and deep artificial neural network) were applied to predict the shear wave velocity. In this study, data from seven wells were used. Due to the fact that only in well #7 shear wave velocity has been measured, and in six other wells this feature has not been recorded, this field data limitation has caused the data of well #7 to be divided into training, testing, and validation data. In multiple regression methods (linear and interaction models), support vector regression, and adaptive Neuro-fuzzy inference system, Randomly, 70% of the data has been used for training and 30% for testing, but in the artificial neural network method, Randomly, 70% of the data has been used for training, 15% for validation and 15% for network testing. For all methods, the root means square error and correlation between actual and estimated data are calculated. Linear model, interaction model, support vector regression, adaptive Neuro-fuzzy inference system, and deep artificial neural network have provided 91, 92, 89, 94, and 98% correlation in training data, and 88, 89, 86, 90 and 92% in testing data, respectively. Also, the RMSE for each of the mentioned methods is 125.59, 115.86, 148.23, 84.36, and 80.49 (m/s) in the training data and 139.77, 133.44, 166.03, 126.15, and 98.04 (m/s) in the testing data, respectively. Our results show that deep artificial neural network has provided a better solution than other methods. Hence, in this study deep artificial neural network has been proposed to estimate the shear wave velocity in other blind wells. Moreover, the Castagna empirical model was used to validate the obtained results from the deep artificial neural network in these wells, which show a good fit between the two models.

    Keywords: Shear wave velocity, Multiple regression, Support vector regression, adaptive neuro-fuzzy inference system, deep artificial neural network
  • ملیحه عباس زاده*، اردشیر هزارخانی، سعید سلطانی محمدی

    مطالعه سیالات درگیر اغلب به صورت آزمایشگاهی و با هدف ارتقا صحت و دقت تجزیه های صورت گرفته انجام می شود. از آنجا که استفاده کاربردی از داده های حاصل از این مطالعات آزمایشگاهی می تواند در فرآیند اکتشاف کانسارها و یا دستیابی به اطلاعات اکتشافی تکمیلی از کانسارهای کشف شده سودمند باشد، در این مطالعه تخمین و مدل سازی پارامترهای ترمودینامیکی سیال درگیر (دمای همگنی، دمای یوتکتیک و شوری) در کانسار مس پورفیری سونگون انجام و در گام نخست، با استفاده از تخمین گر رگرسیون بردار پشتیبان، مدل سه بعدی این پارامترها تهیه شده است. دقت مدل سازی صورت گرفته جهت تخمین داده های سیالات درگیر شامل دمای همگنی، دمای یوتکتیک و شوری سیال درگیر به ترتیب برابر 76، 71 و 93 درصد می باشد. سپس براساس شرایط ترمودینامکی مساعد برای نهشت کالکوپیریت (بازه دمایی 300 تا 400 درجه سانتی گراد و شوری متوسط تا بالا)، از این مدل سه بعدی برای تهیه مدل پیش گویانه کانی زایی استفاده شده است. مقایسه مدل پیش گویانه با مدل بلوکی زمین شناسی عیار مس در محدوده کانسار نشان داد که تطابق مطلوبی بین این دو مدل وجود دارد. در نتیجه می توان 1) از مدل تهیه شده در ادامه فرآیند اکتشاف و با هدف اکتشافات تکمیلی بهره مند شد و 2) از این روش، برای شناسایی مناطق پرپتانسیل کانسارهایی که هنوز در مراحل اکتشافات مقدماتی هستند استفاده کرد.

    کلید واژگان: الگوریتم یادگیری ماشین، رگرسیون بردار پشتیبان، سیالات درگیر، کانسار مس پورفیری سونگون، مدل پیش-گویانه
    Maliheh Abbaszadeh *
    Introduction

    The background of 3D modeling of fluid inclusion data goes back to use of inverse distance weighting (IDW) method in the Caixiashan Pb and Zn deposit (Sun et al., 2011). This method in spite of having some advantages such as simplicity in basis is associated with disadvantages such as uncertainty in selection of weighting function and ignoring data distribution. Today, new methods have been proposed for estimation including the support vector machine method (Dutta et al., 2010). One of this method’s capabilities is in dealing with small data sets (Dutta, 2006; Zhang et al., 1998). In this study, fluid inclusion thermodynamic parameters have been estimated using support vector regression method. Predictive model of mineralization has been provided acording to 3D models resulted for fluid inclusion data and also assumption of proper thermodynamic conditions for chalcopyrite deposition in the Sungun porphyry copper deposit.

    Material and Methods

    In this study, a total of 173 data sets of fluid inclusions were obtained from 59 locations. This dataset using genetic algorithm method divided into training and testing sets (80% and 20%, respectively). Modeling of fluid inclusion thermodynamic parameters has been done by support vector regression method. The SVR is based on the statistical learning theory and the structural risk minimization.

    Results and discussion

    After preparing and determination of training and test datasets, radial basis kernel function (RBF) was selected in order to estimate and model the fluid inclusion thermodynamic parameters using the support vector regression method. Better functionality was the main reason of using this kernel. In the next step, parameters were needed to be carefully determined to obtain a model with high generalization ability. In this regard, the grid search method with cross validation was used to determine optimal values for the model parameters. Model was then trained using the training dataset and finally evaluated on the test dataset. Then fluid inclusion thermodynamic parameters for each block of deposit were estimated using support vector regression method. According to mineralogical and fluid inclusion studies in the Sungun porphyry copper deposit, it has been determined that chalcopyrite deposition is related to fluids with moderate to high salinity and temperatures of 300-400 °C. The predictive model was prepared based on these conditions and estimated thermodynamic Parameters in block model. In this model, each arbitrary block has been labeled on a scale of 1 to 4 (based on the favorable conditions for chalcopyrite deposition). These labels are possibility index for copper deposition. According to possibility index, proper zones have been determined in 3D model. In order to performance evaluation of support vector regression method, the predictive model was compared with 3D model of copper grade. The results of this comparison showed that prepared predictive 3D model has high consistent with copper grade block model.

    Conclusion

    In this study, 3D modeling of fluid inclusion data was performed to estimate the thermodynamic parameters affecting mineralization (homogenization and eutectic temperatures and salinity) using support vector regression method to determine potential mineralization points in the area. Using the 3D models, we found the homogenization and eutectic temperatures and fluids salinity (in different ranges of these factors) in the Sungun porphyry copper deposit. To evaluate the 3D modeling efficiency in advancing the exploration process of the porphyry deposits, the conformity between mineralization and thermodynamic variations of the fluid inclusions was investigated and, based on it; a tool called “Predictive Model” was presented for the evaluation of the occurrence of mineralization in different parts of the region. A comparison of the SVR-based predictive model and the copper grade block model shows acceptable conformity in low, medium, and high-grade regions.

    Keywords: Machine learning algorithm, Support Vector Regression, Fluid inclusion, Sungun Porphyry Copper Deposit, Predictive Model
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال