به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

meteorological variables

در نشریات گروه محیط زیست
تکرار جستجوی کلیدواژه meteorological variables در نشریات گروه علوم پایه
تکرار جستجوی کلیدواژه meteorological variables در مقالات مجلات علمی
  • M. Gidarjati *, T. Matsumoto
    BACKGROUND AND OBJECTIVES

    The study explores the complex relationship between meteorological variables, air quality, and Coronavirus-19 pandemic events in Jakarta, emphasizing the global concern over air pollution's detrimental effects on both health and the economy. It emphasizes the correlation between climate change and exacerbating air pollution by changing weather patterns and meteorological conditions, leading to elevated levels of pollution. Additionally, the study underscores the impact of the Coronavirus-19 pandemic on air quality, with lockdowns temporarily reducing emissions but also revealing the complex interplay between climate change, agricultural practices, and air pollution spikes. The ongoing challenges in improving air quality persist despite the government's efforts, highlighting the need for a thorough understanding of the situation to inform effective policy interventions and strategies for reducing emissions.

    METHODS

    The study analyzed key pollutants from five monitoring stations in Jakarta including particulate matter 2.5 from a Swiss air quality technology company. Meteorological data (temperature, rainfall, wind speed, humidity, and sunshine hours) were sourced from the Indonesian Agency for Meteorology, Climatology, and Geophysics for the period 2018-2021. The restriction measures and case data pertaining to the Coronavirus disease-19 were acquired from Health Office in Jakarta. Data analysis utilized Microsoft excel and statistical package for the social sciences software, with spearman correlation tests due to non-normal distribution. This empirical approach investigated the associations among air pollutants, meteorological factors, and occurrences of Coronavirus disease-19 in Jakarta, Indonesia.

    FINDINGS

    Positive linear elationships were identified between the concentrations of particulate matter 10, particulate matter 2.5, carbon monoxide, and nitrogen dioxide. Conversely, a negative linear correlation was observed between carbon monoxide and ozone levels. Nonlinear correlations also existed between various pollutants. During the pandemic, carbon monoxide, nitrogen monoxide and sulphur dioxide concentrations increased, whereas particulate matter 2.5 and ozone levels decreased. Air quality parameters were generally higher in the dry season. Throughout the pandemic, the temperature and wind speed exhibited a consistent pattern, remaining stable. However, it is noteworthy that the levels of humidity and intensity of rainfall experienced a noticeable increase during this period. Particulate matter exhibited a negative correlation with both humidity and rainfall, whereas temperature displayed positive correlations. Despite improved air quality during the pandemic, the link between air pollutants, meteorological factors, and Coronavirus disease-19 transmission was unclear, with only weak correlations between air quality parameters and Coronavirus-19 related deaths. Moderate correlations were observed between specific levels of pollutants prior to and amidst the pandemic.

    CONCLUSION

    Based on the findings, there was a weak correlation between confirmed deaths because of Coronavirus-19 and all air quality parameters.  Nevertheless, the study showcased a more distinct association between confirmed cases of Coronavirus-19 and particular pollutants. Coronavirus-19 This study identified several key meteorological variables, including wind speed, direction, temperature, humidity, and rainfall, as significant drivers of particulate matter and sulphur dioxide concentrations. It is essential to comprehend the intricate connections among meteorological factors, air quality indicators, and occurrences of Coronavirus disease-19 in order to formulate efficient public health measures and environmental regulations aimed at safeguarding communities from the impacts of air pollution and infectious diseases.

    Keywords: Air Pollution, Air Quality, Coronavirus Disease-19 (COVID-19) Pandemic, Meteorological Variables
  • محسن اصولی شجاعی، فاطمه میکائیلی، سعید صمدیان فرد*
    دمای نقطه شبنم در زمینه های مختلف از جمله علوم هواشناسی جهت پیش بینی های مربوط به آب و هوا دارای اهمیت فراوانی می باشد. لذا ارایه مدل های مناسب جهت پیش بینی دقیق مقدار این متغیر هواشناسی برای استفاده عملی مهندسین کشاورزی و ایستگاه های مجاوری که در آن ها امکان اندازه گیری این دما وجود ندارد، ضروری می باشد. در پژوهش حاضر توانایی چهار مدل داده محور شامل درخت گرادیان تقویتی، مدل درختی M5P، جنگل تصادفی و جنگل تصادفی بهینه شده با الگوریتم ژنتیک در تخمین دمای نقطه شبنم روزانه مورد ارزیابی قرار گرفت. برای این منظور از داده های هواشناسی روزانه دو ایستگاه اردبیل و پارس آباد در بازه زمانی 1384 تا 1399 استفاده شد. پارامترهای هواشناسی مورد استفاده شامل حداقل، حداکثر و میانگین دما، رطوبت نسبی، ساعت آفتابی و سرعت باد بوده که در 10 ترکیب متفاوت به عنوان متغیرهای ورودی برای هر یک از مدل های مذکور در نظر گرفته شدند. مقایسه نتایج به دست آمده برای هر دو ایستگاه نشان داد که مدل  M5P-8با دارا بودن جذر میانگین مربعات خطای °C 54/0 و ضریب ویلموت برابر با 998/0 در ایستگاه اردبیل و  مدل M5P-6 با جذر میانگین مربعات خطای ◦C 29/0 و ضریب ویلموت برابر با 00/1 در ایستگاه پارس آباد به عنوان برترین مدل ها معرفی شدند.
    کلید واژگان: اردبیل، ارزیابی آماری، متغیرهای هواشناسی، مدل های هوشمند
    Mohsen Osouli Shojaei, Fatemeh Mikaeili, Saeed Samadianfard *
    Dew point temperature is very important in various fields including meteorology for weather forecasts. Therefore, it is necessary to provide suitable models to accurately predict the value of this meteorological variable for the practical use of agricultural engineers and nearby stations where it is not possible to measure this temperature. In the present study, we investigated the ability of four data-driven models, including gradient reinforcement tree, M5P tree model, random forest, and random forest optimized with genetic algorithm, in estimating daily dew point temperature. For this purpose, the daily meteorological data of two stations in Ardabil and Parsabad were used in the period of 2014 to 2019. The used meteorological parameters include minimum, maximum, and average temperature, relative humidity, sunshine hour, and wind speed, which were considered input variables for each of the mentioned models in 10 different combinations. The comparison of the results obtained for both stations showed that the M5P-8 model with a root mean square error of 0.54°C and a Wilmot coefficient equal to 0.998 in the Ardabil station and the M5P-6 model with a root mean square error of 0.29°C and Wilmot coefficient equal to 1.00 was introduced as the best models in Parsabad station.
    Keywords: Ardabil, Intelligence models, Meteorological variables, Statistical Evaluation
  • Mitra Mohammadi *, Morteza Hatami, Reza Esmaeli, Samaneh Gohari, Mandana Mohammadi, Elahe Khayami
    The time series model has been exploited to estimate the relationship between meteorological variables and air in Mashhad with respiratory mortality. For this purpose, data on respiratory mortality was based on data recorded on March 2014 to 2015. In order to investigate the effect of meteorological variables and air pollution values on respiratory mortality, the Box- Jenkins time series model has been utilized. Moreover, the effect of age and seasons on the number of respiratory deaths was assessed by the linear regression and ANOVA test. The fit of the final model to determining the monthly relationship between meteorological variables and air pollutants with the number of respiratory mortalities is a (1,0,2) ARIMA. In the monthly survey, temperature and rainfall have the inverse relationship and pressure has the direct relationship with the average of 7.4, 3.2, and 17.42 on the respiratory mortality. It was also found direct relationship between the mortality from respiratory diseases and CO and O3 and inverse relationship with SO2, NO2 and PM2.5 pollutants with an average of 67.40, 17.42, 17.89, 6.83, and 0.68, respectively. Also, the results of this study indicate that older people are more likely to be affected by the inappropriate status of air quality by 0.37%. The results showed a significant difference between respiratory mortality in different seasons of the year, and the highest number of deaths occurred in the winter.
    Keywords: Air pollutants, meteorological variables, respiratory disease, Mortality, and Time Series Model
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال