similarity weighted instance-based learning in modeling
در نشریات گروه محیط زیست-
زمینه و هدف
تغییر در پوشش جنگلی در خدمات اکوسیستمی، تعادل کربن در جو و در نتیجه تغییرات آب و هوا نقش بسیار مهمی ایفا می کند. هدف از این تحقیق مقایسه سه روش شبکه عصبی مصنوعی، رگرسیون لجستیک و یادگیری برمبنای نمونه وزنی مشابهت، جهت پیش بینی روند مکانی تغییرات پوشش جنگل است.
روش بررسیدر این مطالعه از نقشه های کاربری اراضی تولید شده از ماهواره Landsat سنجنده TM مربوط به سال های 1984 و 2012 استفاده شد. مدل سازی پتانسیل انتقال با استفاده از شبکه عصبی مصنوعی، رگرسیون لجستیک و یادگیری برمبنای نمونه وزنی مشابهت و پیش بینی تغییرات برای بهترین مدل با استفاده از زنجیره مارکف انجام شد. به منظور برآورد صحت مدل سازی از آماره های ROC، نسبت موفقیت به هشدار خطا و عدد شایستگی استفاده شد.
یافته هانتایج بیان گر صحت بالای شبکه عصبی مصنوعی با میزان ROC برابر 975/0 ، نسبت موفقیت به هشدار خطا 63 درصد و عدد شایستگی 12 درصد می باشد.
بحث و نتیجه گیریشبکه های عصبی مصنوعی در مقایسه با رگرسیون لجستیک و یادگیری بر مبنای نمونه وزنی مشابهت از صحت بالاتر و خطای کم تری در مدل سازی و پیش بینی تغییرات جنگل برخوردارند.
کلید واژگان: جنگل زدایی، شبکه عصبی مصنوعی، رگرسیون لجستیگ، یادگیری بر مبنای نمونه وزنی مشابهت، حوزه آبخیز گرگانرودBackground and ObjectiveThe change in forest cover plays a vital role in ecosystem services, atmospheric carbon balance and thus climate change. The goal of this study is comparison of three procedure of Artificial Neural Network, Logistic regression and Similarity weighted Instance-based Learning (SIM Weight) to predict spatial trend of forest cover change.
MethodIn this study, land use maps for the periods 1984 and 2012 derived from Landsat TM satellite imagery, was used. Transition potential modeling using artificial neural network, Logistic regression and Similarity weighted Instance-based Learning and prediction based on the best model using Markov chain model was performed. In order to assess the accuracy of modeling, statistics of relative performance characteristic (ROC), ratio Hits/False Alarms and figure of merit was used.
FindingsThe results show the accuracy of artificial neural network with the ROC equal to 0.975, the ratio Hits/False Alarms equal to 63 percent and the figure of merit is equal to 12 percent.
Discussion and Conclusions
Artificial Neural Networks in comparison with Logistic Regression and Similarity weighted Instance-based Learning has higher accuracy and less error in modeling and predicting of forest changes.
Keywords: deforestation, Neural Networks, logistic regression, Similarity weighted Instance-based Learning in modeling, Gorganrood watershed
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.