classification methods
در نشریات گروه فنی و مهندسی-
For decades, plastic components have been the main parts of products in industries such as food, pharmaceutical, automotive, etc. Generally, these components are created by injection molding machines. Using these machines, raw materials are converted to plastic parts, e.g., bottle caps, dosing spoons, and bumpers. The part of the machine that provisionally holds plastic products is called “Mold” which has a unique form for each product. Since molds are sensitive components with high prices, appropriate care is required. When mold is used as the dynamic part of the machine, it’s a high potential for damages due to incomplete product ejection. Utilizing an automated inspection system is a modern solution to prevent possible problems. In this paper, we propose an intelligent system based on machine vision that consists of image capturing, processing, and classification sections. In the processing section, we have used a novel modified Local Binary Pattern algorithm which leads to the suitable features for classifying images into two categories. To achieve the best classifier, four potent machine learning-based methods are evaluated: KNN, SVM, Random Forest, and Gradient Boosting. This evaluation is based on criteria like F1-score, training and processing time, and the experimental results claim that the SVM method is the best classifier with 11.87ms training time, 9.04us processing time, and F1-Score of 0.96.Keywords: Classification Methods, Injection Molding, Inspection Systems, Local binary pattern, Machine Learning, Machine Vision
-
For decades, plastic components have been the main parts of products in industries such as food, pharmaceutical, automotive, etc. Generally, these components are created by injection molding machines. Using these machines, raw materials are converted to plastic parts, e.g., bottle caps, dosing spoons, and bumpers. The part of the machine that provisionally holds plastic products is called “Mold” which has a unique form for each product. Since molds are sensitive components with high prices, appropriate care is required. When mold is used as the dynamic part of the machine, it’s a high potential for damages due to incomplete product ejection. Utilizing an automated inspection system is a modern solution to prevent possible problems. In this paper, we propose an intelligent system based on machine vision that consists of image capturing, processing, and classification sections. In the processing section, we have used a novel modified Local Binary Pattern algorithm which leads to the suitable features for classifying images into two categories. To achieve the best classifier, four potent machine learning-based methods are evaluated: KNN, SVM, Random Forest, and Gradient Boosting. This evaluation is based on criteria like F1-score, training and processing time, and the experimental results claim that the SVM method is the best classifier with 11.87ms training time, 9.04us processing time, and F1-Score of 0.96.
Keywords: Classification Methods, Injection Molding, Inspection Systems, Local binary pattern, Machine Learning, Machine Vision -
در دهه اخیر کاربرد تکنیک های داده کاوی و روش های هوشمند جهت استخراج دانش به صورت خودکار از مجموعه انبوه داده ها مورد توجه پژوهش های زیادی قرار گرفته است.باتوجه به ساختار نمایش دانش مبتنی بر قوانین و قابلیت تفسیر بالای این روش در بیان الگوهای پنهان در اطلاعات، استخراج الگوهای پنهان در قالب مجموعه قوانین،از اهمیت بالایی در سیستم های هوشمند تصمیم یار برخوردار است.این مقاله پس از مرحله پیش پردازش در ابتدا به سراغ روش استخراج قوانین به صورت مستقیم از روی مجموعه داده ها می رود و بعد تکنیک استخراج قوانین با روش طبقه بندی فازی را از روی مجموعه قوانینی که در مرحله قبل بدست آمد را بررسی نموده که در این مرحله قوانین ناسازگار، تکراری و متناقض حذف خواهند شد.از آنجاییکه یکی از چالش ها در سیستم های هوشمند ومدیریت مباحث عدم قطعیت از جمله فازی این است که آموزشی در آن ها اتفاق نمی افتد به منظور دست یافتن به مجموعه قوانین بهینه به سراغ الگوریتم ژنتیک رفته و علاوه بر کاهش مجدد قوانین تکراری، بهبود قوانین فازی را خواهد داشت . روش فازی_ژنتیک پیشنهادی از 5دیتاست مشهور استفاده کرده است که در 3دیتاست کارایی بیشتری نسبت به روش های طبقه بندی کلاسیک رگرسیونSVM و Naïve Bayes داشته است
کلید واژگان: روش های طبقه بندی قوانین، عدم قطعیت، قوانین مبتنی بر طبقه بندی فازی، الگوریتم ژنتیک، تنظیم و بهبود قوانین فازیIn the last decade, applications of data mining techniques and intelligent methods to extract knowledge automatically from the massive datasets has received a lot of attention. The Rule-based knowledge representation and their high capability to interpret this method in expressing hidden patterns in information, extracting hidden patterns in the form of a set of rules plays an important role in intelligent decision-making systems. After the pre-processing step, this article first goes to the method of extracting rules directly from the data set and then examines the technique of extracting rules by fuzzy classification method from the set of rules that was obtained in the previous step. At this stage, inconsistent, repetitive, and contradictory rules will be removed. Since one of the challenges in intelligent systems with the capability of managing uncertainty issues such as fuzzy systems, is that training does not take place in them, in order to achieve the optimal set of rules, go to the genetic algorithm and in addition to improve fuzzy rules. The proposed Fuzzy-Genetic method was evaluated on 5 well-known datasets, which in 3 datasets were more efficient than the classical classification methods of SVM and Naïve Byes regression.
Keywords: Uncertainty, Classification Methods, Fuzzy Classification Rules, Improve Fuzzy Rules, GA -
بحران های مالی موجود در نظام های بانکی ناشی از عدم توانایی در مدیریت ریسک های اعتباری است. امتیازدهی اعتباری یکی از تکنیک های مدیریت ریسک است که ریسک وام گیرنده را تحلیل می کند. در این مقاله با استفاده از مزایای روش های هوش محاسباتی و محاسبات نرم یک روش ترکیبی جدید به منظور بهبود مدیریت ریسک های اعتباری ارائه شده است. در روش پیشنهادی، به منظور مدل سازی در شرایط عدم قطعیت، پارامترهای شبکه عصبی، شامل وزن ها و خطاها، به صورت فازی در نظر گرفته شده اند. در این روش، ابتدا سیستم مورد مطالعه با استفاده از شبکه های عصبی متامدل بندی شده و سپس با به کارگیری استنتاجات فازی تصمیم بهینه با بیشترین میزان برتری تعیین خواهد شد. نتایج حاصل از به کارگیری روش پیشنهادی بیانگر کارامدی و دقت بالای این روش در تحلیل مسائل امتیازدهی اعتباری است.کلید واژگان: امتیازدهی اعتباری، روش های طبقه بندی، پرسپترون های چندلایه، شبکه های عصبی مصنوعی، منطق فازیFinancial crises in banking systems are due to inability to manage credit risks. Credit scoring is one of the risk management techniques that analyze the borrower's risk. In this paper, using the advantages of computational intelligence as well as soft computing methods, a new hybrid approach is proposed in order to improve credit risk management. In the proposed method, for modeling in uncertainty conditions, parameters of the neural network, including weights and errors, are considered in the form of fuzzy numbers. In this method, the underlying system is firstly modeled using neural networks and then, using fuzzy inferences, the optimal decision will be determined with the highest degree of superiority. Empirical results of using the proposed method indicate the efficiency and high accuracy of this method in analyzing credit rating problems.Keywords: Credit scoring, Classification methods, Multilayer perceptrons (MLPs), Artificial neural networks, Fuzzy logic
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.