clustering methods
در نشریات گروه فنی و مهندسی-
Automatic topic detection seems unavoidable in social media analysis due to big text data which their users generate. Clustering-based methods are one of the most important and up-to-date categories in topic detection. The goal of this research is to have a wide study on this category. Therefore, this paper aims to study the main components of clustering-based-topic-detection, which are embedding methods, distance metrics, and clustering algorithms. Transfer learning and consequently pretrained language models and word embeddings have been considered in recent years. Regarding the importance of embedding methods, the efficiency of five new embedding methods, from earlier to recent ones, are compared in this paper. To conduct our study, two commonly used distance metrics, in addition to five important clustering algorithms in the field of topic detection, are implemented by the authors. As COVID-19 has turned into a hot trending topic on social networks in recent years, a dataset including one-month tweets collected with COVID-19-related hashtags is used for this study. More than 7500 experiments are performed to determine tunable parameters. Then all combinations of embedding methods, distance metrics and clustering algorithms (50 combinations) are evaluated using Silhouette metric. Results show that T5 strongly outperforms other embedding methods, cosine distance is weakly better than other distance metrics, and DBSCAN is superior to other clustering algorithms.Keywords: Topic Detection, Transfer learning, Embedding Methods, Distance Metrics, Clustering Methods, Covid-19
-
Nowadays, with the expansion of the internet and its associated technologies, recommender systems have become increasingly common. In this work, the main purpose is to apply new deep learning-based clustering methods to overcome the data sparsity problem and increment the efficiency of recommender systems based on precision, accuracy, F-measure, and recall. Within the suggested model of this research, the hidden biases and input weights values of the extreme learning machine algorithm are produced by the Restricted Boltzmann Machine and then clustering is performed. Also, this study employs the ELM for two approaches, clustering of training data and determine the clusters of test data. The results of the proposed method evaluated in two prediction methods by employing average and Pearson Correlation Coefficient in the MovieLens dataset. Considering the outcomes, it can be clearly said that the suggested method can overcome the problem of data sparsity and achieve higher performance in recommender systems. The results of evaluation of the proposed approach indicate a higher rate of all evaluation metrics while using the average method results in rates of precision, accuracy, recall, and F-Measure come to 80.49, 83.20, 67.84 and 73.62 respectively.
Keywords: Recommender Systems, Extreme learning machine, Restricted Boltzmann Machine, Data sparsity, Clustering methods -
ناهنجاری های هندسی ستون فقرات، عموما با دردهای مزمن کمری و گردنی همراه می باشند. در این ناهنجاری ها انحنای ستون مهره در فضای سه بعدی دستخوش تغییراتی می شود که در بسیاری از موارد ضمن کاهش میزان بازشدگی قفسه سینه، باعث بروز اختلالات تنفسی و اثرات منفی بر روی سیستم قلبی می شود. برای تصحیح این ناهنجاری ها و جلوگیری از پیشرفت آن ها در حالت حاد، جراحان از جراحی فیوژن خلفی ستون مهره ها استفاده می کنند. قبل از انجام عمل جراحی به منظور تشخیص وضعیت بیمار و انتخاب نحوه مناسب عمل، استخراج برخی پارامترهای کلینیکی مهم ستون فقرات ازجمله انحناها، زوایای کوب، انحراف جانبی، زوایای مهره ها و میزان چرخش آن ها در صفحات مختلف ضروری است. در این پژوهش ابتدا با استفاده از تصاویر توموگرافیک ویرایش شده در نرم افزار میمیکس، مدل سه بعدی ستون مهره ها در قالب ابر نقاط آماده شد. سپس ضمن تفکیک و جداسازی مهره ها به کمک روش های خوشه بندی مختلف ازجمله روش شبکه عصبی خودسازمان ده، روش k-میانگین و روش سلسله مراتبی اطلاعات هندسی مهم مقاطع ستون مهره ها ازجمله انحناهای ستون مهره ها و زوایای آن با استفاده از الگوریتم های تخصیص منحنی، به صورت خودکار استخراج شد. علاوه بر این ضمن پیاده سازی الگوریتم های مشخص، سایر ویژگی های کلینیکی هریک از مهره ها ازجمله کمینه و بیشینه ارتفاع مهره در سه بعد، طول و عرض جسم مهره ای و همچنین جابجایی نسبی مهره ها به صورت خودکار محاسبه گردید. به منظور اعتبارسنجی روش های ارائه شده و اندازه های استخراج شده، مقادیر به دست آمده در هر مرحله بار دیگر به صورت دستی در نرم افزار میمیکس محاسبه شدند. با مقایسه مقادیر متناظر، اعتبار نتایج و کارایی بالای الگوریتم های پیشنهادی تایید گشت.کلید واژگان: ناهنجاری های هندسی ستون فقرات، زاویه کوب، روش های خوشه بندی، اسکولیوز، آنتروپومتری مهرهSpinal deformities are generally associated with lumbar and cervical chronic pain and additionally they disturb the health. In these deformities, lumbar spinal curvature undergone changes in three dimensional space and in most cases, they cause reduction of lung capacities, breathing problems and negative effects on cardiovascular system. In critical deformity cases, in order to correct the deformity and prevent its progression, surgeons determine to perform posterior spinal fusion. As a result, they need to extract some important clinical parameters of spine such as Cobb angle, sagittal and coronal balance, spinal curvature, vertebraes angles and their rotations. In this study, edited tomographic images in MIMICS, were used to prepare a three dimensional model of the spine. Then by using curve fitting techniques and different clustering methods such as self-organization nueral network, k-means and hierarchical method, vertebras were separated and important geometrical data such as curvature of the spine and vertebras angle were obtained. In addition, through implementation of certain algorithms, other clinical features of each vertebra, including minimum and maximum height, length and width of the vertebral body and the relative displacement of vertebras were calculated automatically. In order to validate the proposed methods, measures and angles; derived values obtained automatically at each stage, were again calculated manually in MIMICS. Automatic values were verified by being compared with these manual results. In conclusion the reliability, accuracy and performance of the proposed automatic algorithms were demonstrated.Keywords: Spinal deformities, Cobb angle, Clustering methods, Scoliosis, Vertebral anthropometry
-
Permeability, the ability of rocks to flow hydrocarbons, is directly determined from core. Due to high cost associated with coring, many techniques have been suggested to predict permeability from the easy-to-obtain and frequent properties of reservoirs such as log derived porosity. This study was carried out to put clustering methods (dynamic clustering (DC), ascending hierarchical clustering (AHC) self organizing map (SOM) and multi-resolution graph-based clustering (MRGC)) into practice in order to predict the permeability of a heterogeneous carbonate reservoir in southwest of Iran. In addition, the results are compared with three conventional approaches, empirical models, regression analysis, and ANN. The performance of all the examined methods was compared in order to choose the best approach for predicting permeability in un-cored wells of the studied field. For all clustering methods, selecting the optimal number of clusters is the most important task. The optimal values for the number of clusters are selected by iteration. The optimal number of clusters for MRGC, SOM, DC, and AHC are 7, 9, 9, and 8 respectively. Empirical equations and regression analysis weakly predict permeability and the value of R2 parameters of both approaches are around 0.6. Generally the performance of clustering techniques is acceptable in Fahliyan formation. These techniques predict permeability between 1 and 1000 mD very well and just overestimate permeability values less than 1 mD. SOM performed the best among all examined techniques (R2=0.7911). The constructed and validated SOM model with 9 clusters was selected to predict permeability in one of un-cored wells of the studied field. In this well, the predicted permeability was in good agreement with MDT derived permeability.Keywords: Permeability, Prediction, Clustering Methods, Carbonate Reservoir
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.