به جمع مشترکان مگیران بپیوندید!

تنها با پرداخت 70 هزارتومان حق اشتراک سالانه به متن مقالات دسترسی داشته باشید و 100 مقاله را بدون هزینه دیگری دریافت کنید.

برای پرداخت حق اشتراک اگر عضو هستید وارد شوید در غیر این صورت حساب کاربری جدید ایجاد کنید

عضویت
جستجوی مقالات مرتبط با کلیدواژه

decision tree algorithms

در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه decision tree algorithms در مقالات مجلات علمی
  • Zahra Fathollahi, Amir Golroo *, Morteza Bagheri
    Despite other modes of transportation, trains move just along one dimension. However, trains inevitably change their track or move to the opposite track in railway stations and ports using switch systems. Switches are vital for better operation and seamless movement of trains. Furthermore, they are crucial for the safety of movement in tracks due to high derailment potentials at switches; therefore, all parts of switches need to be continuously monitored. An increasing number of accidents in railway systems is highly dependent on switch performance. According to the Islamic Republic of Iran Railways, 90 percent of railway accidents in Tehran stations occur on switches, from which 25 percent happen due to switch defects. Therefore, condition evaluation of switches is of significant importance. Research studies have not been sufficiently conducted on automated condition evaluation of switches. This paper aims to develop a robust automated approach to evaluate switch conditions to be able to measure switch defects. Having taken some pictures from various switches with fixed angles and distance from rails, an image processing technique is applied to determine defects. The first step of image processing is to preprocess the images to increase their quality. The second step is to indicate the type and severity of defects using different algorithms. A Graphical User Interface (GUI) is developed to develop a user-friendly tool to be able to load images, preprocess the images, measure defects, and report the health condition of switches. Finally, the outcomes are validated by applying ground truth, which ends up with high accuracy of approximation of 87 percent.
    Keywords: Fatality Severity, Risk Map, Classification, Decision Tree algorithms
  • Saba Momeni Kho, Parham Pahlavani *, Behnaz Bigdeli
    Nowadays, a significant part of goods and passengers are transported on suburban highways with mainly high-speed vehicles. Hence, these highways are very prone to accidents with different injuries. Due to the high fatality or severe physical/mental injury rates caused by car crashes, analyzing these accident-prone areas and identifying the factors affecting their occurrences is crucial. The specific objective of the study was to compare Chi-square Automatic Interaction Detector (CHAID), Classification and Regression Tree (CART), C4.5 and C5.0 decision tree data mining classification algorithms in building classification models for the fatality severity of 2355 fatal crash data records during 2007-2009 occurred in the roadways of 8 states in the USA. The results were evaluated using the accuracy metrics such as overall accuracy, kappa rate, precision, recall, and F-measure. The investigations confirmed that C5.0 had the best performance with the overall accuracy, and kappa rates of 94% and 92%, respectively. Additionally, classified fatality severity levels of the crashes were proposed for each algorithm to generate risk maps on the roads, to create potential accident risk spots. Decision tree models can be used for real-time data to find invariants in the tree over a period of time, which would be beneficial for policymakers.
    Keywords: Fatality Severity, Risk Map, Classification, Decision Tree algorithms
  • آرش فهمی حسن، محمدرضا مغاری، امیدمهدی عبادتی
    اهدای خون به دلیل نقش حیاتی و حساسی که در امر حفظ سلامت و بقاء زندگی انسان دارد مورد توجه می باشد. در جهان امروز علیرغم تحول عظیم علمی و با وجود پیشرفت های بزرگی که در علوم پزشکی رخ داده است، هنوز تامین کافی خون سالم یکی از چالش ها و دغدغه های مجامع پزشکی جهان است. حفظ و تامین حجم خون مورد نیاز در بانک های خون هر مرکز انتقال خون در هر منطقه، گروه های متنوع خونی و ارتباطاتی که بین آن ها وجود دارد و با فرض اینکه یکسری گروه های خونی کمیاب تر می باشند، پیش بینی و برنامه ریزی اهداء خون را در طول زمان مهم تر و پیچیده تر می کند. استفاده از داده کاوی در پایگاه های داده بیمارستان ها و مراکز انتقال خون به کشف روابط کمک می کند تا آن ها بتوانند بر مبنای گذشته یک پیش بینی از آینده داشته باشند، و بتوانند به بهترین شکل برای کمک، تشخیص و درمان های پزشکی موفق بیماری های مختلف را شناسایی کرده و الگوهای جراحات جدید را نشان دهند. در این مقاله سعی شده است تا در سطوح تصمیم گیری مربوط به حوزه مذکور، از تکنیک های داده کاوی و یادگیری ماشین برای پیش بینی اهداء خون استفاده شود تا با استفاده از این مکانیزم بتوانیم پیش بینی کنیم که در بازه های زمانی مختلف، چه میزان خون به بانک ها و مراکز انتقال خون اهداء خواهد شد که در این صورت بتوانیم حجم خون مورد نیاز بانک های خون مناطق مختلف را تخمین و تامین نمائیم. در همین راستا از چند الگوریتم طبقه بندی در یادگیری با نظارت از جمله الگوریتم های درخت تصمیم، KNN، SVM و MLP که یکی از انواع شبکه های مصنوعی عصبی (ANN) می باشد، برای پیش بینی استفاده شده و نتایج میزان دقت هر کدام ارائه شده است.
    کلید واژگان: داده کاوی، یادگیری ماشین، درخت تصمیم، K- نزدیکترین همسایه، ماشین بردارپشتیبان، شبکه عصبی مصنوعی
    Arash Fahmihassan, Mohammadreza Moghari, Omidmahdi Ebadati
    Blood donation has an important and critical role to preserve the health and survival of human life. In today's world, despite the enormous scientific advancements and the great developments in medical sciences, adequate supply of healthy blood is one of the challenges and concerns of the medical community in the world. Preserving and supplying the volume of blood required in blood banks of each region, and the diverse blood groups with the connections between them, with assuming that the number of blood groups are rarer; makes the prediction and planning of blood donation more and more complicated and important during the time. The use of data mining in hospitals and blood transfer centers databases helps in the discovery of relations, so that they can have a future prediction based on the past information. Accordingly, they have better diagnosed and successful cure various illnesses and show the patterns of new injuries. In this paper, we try to use data mining and machine learning techniques in decision making levels at mentioned field, to use this mechanism for prediction that how much blood will be donate to blood transfusion centers and blood banks in different period time, to estimate and supply the required blood volume of blood banks in different areas. In this regard, we use several classification algorithms in supervised learning for the prediction, including decision tree algorithms, KNN, SVM and MLP, these algorithms are implemented to predict and results of accuracy are presented.
    Keywords: Data Mining, Machine Learning, Decision Tree Algorithms
نکته
  • نتایج بر اساس تاریخ انتشار مرتب شده‌اند.
  • کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شده‌است. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
  • در صورتی که می‌خواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.
درخواست پشتیبانی - گزارش اشکال