جستجوی مقالات مرتبط با کلیدواژه
local binary patterns
در نشریات گروه فنی و مهندسی
تکرار جستجوی کلیدواژه local binary patterns در مقالات مجلات علمی
-
Monitoring the facial expressions of patients in clinical environments is a necessity in addition to vital sign monitoring. Pain monitoring of patients by facial expressions from video sequences eliminates the need for another person to accompany patients. In this paper, a novel approach is presented to monitor the expression of face and notify in case of pain using tracking fiducial points of face in video sequences and spatio-temporal Local Binary Patterns (LBPs) for eyes and eyebrows. The motion of eight fiducial points on facial features such as mouth, eyes, eyebrows are tracked by Lucas-Kanade algorithm and the movement angles are recorded in a feature vector which along with the spatio-temporal histogram of LBPs creates a concatenated feature vector. Spatio-temporal LBPs boost the proposed algorithm to capture minor deformations on eyes and eyebrows. The feature vectors are then compared and classified using the Chi-square similarity measure. Experimental results show that leveraging spatio-temporal LBPs improves the accuracy by 12% on STOIC database.Keywords: Facial expression, Tracking fiducial points, Spatio-temporal, Local Binary Patterns, Pain expression, Video sequences
-
شناسایی سبک هر نقاش یکی از مسائل مهم در سبک شناسی است ولی اکثر هنرمندان سبک و روش خود را توضیح نمی دهند و افراد اغلب با دنبال کردن نقاشی های یک هنرمند و با توجه به جزییات نقاشی ها به صورت تجربی سبک یک هنرمند را تشخیص می دهند. در این مقاله، با استفاده از تکنیک های پردازش تصویر برای اولین بار رویکردی بر طبقه بندی سبک نقاشان ایرانی پیشنهاد شده است. در این رویکرد جهت استخراج بردارهای ویژگی از هیستوگرام گرادیان جهت دار، الگوی باینری محلی و همچنین ترکیب این دو ویژگی استفاده شده است، با به کار بردن دسته بند ماشین بردار پشتیبان بردارهای ویژگی طبقه بندی شده اند. به منظور ارزیابی روش ارائه شده از پایگاه داده ای شامل نقاشی های پنج نقاش معروف ایرانی با نام های حسین بهزاد، کمال الملک، مرتضی کاتوزیان، سهراب سپهری و محمود فرشچیان استفاده شده است. نتایج آزمایش ها نشان می دهد که روش پیشنهادی ما به خوبی می تواند سبک های نقاشی را طبقه بندی کند. سبک های متفاوت با استفاده از طبقه بند ماشین بردار پشتیبان با درصد صحت متوسط 95.48% از یکدیگر تفکیک شدند.کلید واژگان: طبقه بندی سبک هنری نقاشان، الگوی باینری محلی، ماشین بردار پشتیبان، هیستوگرام گرادیان جهت دارStylometry is one of the key issues in art work recognation, however most artists do not identify their styles. Generally, people often empirically recognize an artist's style through following the artist's paintings and paying attention to the painting's details. This paper, for the first time, proposes an approach to classify Iranian painter's style utilising image processing techniques. For feature extraction, histogram of gradient (HOG) and local binary patterns (LBP) are exploited applying support vector machine (SVM) for classification. To assess the proposed method, one dataset of paintings that contains five famous Iranian painters, namely Hossein Behzad, Kamal-ol-Molk, Morteza Katouzian, Sohrab Sepehri and Mahmoud Farshchian, including 326 paintings, is collected. The experimental results indicate that our proposed method can well classify the painting styles, where, different styles are classified with average accuracy rate of 95.48%.Keywords: Stylometry of painting, local binary patterns, support vector machine, histogram of oriented gradients
-
روش های زیادی برای استخراج ویژگی از تصاویر بافتی ارائه شده اند، یکی از مهمترین و ساده ترین روش ها، روش های مبتنی بر الگوی دودویی محلی است که بدلیل سادگی در پیاده سازی و استخراج ویژگی های مناسب با دقت طبقه بندی بالا، مورد توجه بسیاری از متخصصان قرار گرفته است. همچنین از ترکیب الگوی دودویی محلی و واریانس محلی ویژگی هایی با نتایج بهتر طبقه بندی تولید شده است. در اینجا از یک روش جدید بنام الگوی انتروپی محلی استفاده شده است. این روش از آن جهت که از رابطه ای مشابه انتروپی استفاده می کند بر این اساس نامگذاری شده است ولی از برخی جهات با رابطه انتروپی فرق دارد. روش پیشنهادی در مقایسه با الگوی دودویی محلی و واریانس محلی به نویز مقاوم تر است. همچنین ترکیب آن با الگوی دودویی محلی نتایج بسیار بهتری نسبت به ترکیب واریانس محلی با الگوی دودویی محلی تولید می کند. الگوی انتروپی محلی همانند واریانس نشان دهنده میزان غیرهمسان بودن الگوهای محلی هر همسایگی است. این روش ضمن اینکه کلیه ویژگی های مثبت روش های موجود مانند غیرحساس بودن به چرخش و تغییرات روشنایی را دارد، نسبت به نویز نیز بسیار مقاوم است.کلید واژگان: طبقه بندی بافت، استخراج ویژگی، الگوهای دودویی محلی، واریانس محلی، الگوی انتروپی محلیThere are many methods for feature extraction from texture images. Local Binary Pattern (LBP) is one of the most important of these methods. It is a simple method for implementation and can extracttexture features efficiently.LBP can be combined with local variance (VAR) to provide higher classification rate. In this paper, a new method is proposedwhich is named Local Entropy Pattern (LEP). The equation of this method is similar to Entropy literally, butit is differ from Entropy in some issues. The proposed method is more robust to noise than LBP and VAR. In addition, by combiningit's features with LBP features the classification rate increases significantly and it provides higher accuracy than LBP/VAR. Local Entropy Pattern shows dissimilarity of a local neighborhood. This approach has all positive points of LBP and some state-of-art similar methods. It is not only rotation and grayscale invariant but also noise robust.Keywords: Texture Classification, Feature Extraction, Local Binary Patterns, Local Variance, Local Entropy Pattern
-
Journal of Artificial Intelligence and Data Mining, Volume:3 Issue: 1, Winter-Spring 2015, PP 30 -37In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of PCA results. For feature extraction, local binary patterns (LBP) technique is applied on the ICs. It transforms the ICs into spatial histograms of LBP values. For feature selection, genetic algorithm (GA) is used to obtain a set of features with large discrimination power. In the next step of feature selection, linear discriminant analysis (LDA) is applied to further extract features that maximize the ratio of between-class and within-class variability. Finally, a test subject is classified into schizophrenia or control group using a Euclidean distance based classifier and a majority vote method. In this paper, a leave-one-out cross validation method is used for performance evaluation. Experimental results prove that the proposed method has an acceptable accuracy.Keywords: Schizophrenia, ICA, Feature Extraction, Local binary patterns, LDA
-
In recent years, facial expression recognition, as an interesting problem in computer vision has been performed by means of static and dynamic methods. Dynamic information plays an important role in recognizing facial expression in the image sequences. However, using the entire dynamic information in the expression image sequences is of higher computational cost compared to the static methods. To reduce the computational cost, instead of entire image sequence, only neutral and emotional faces can be employed. In the previous research, this idea was used by means of Difference of Local Binary Pattern Histogram Sequences (DLBPHS) method in which facial important small displacements were vanished by subtracting Local Binary Pattern (LBP) features of neutral and emotional face images. In this paper, a novel approach is proposed to utilize two face images. In the proposed method, the face component displacements are highlighted by subtracting neutral image from emotional image; then, LBP features are extracted from the difference image as well as the emotional one. Then, the feature vector is created by concatenating two LBP histograms. Finally, a Support Vector Machine (SVM) is used to classify the extracted feature vectors. The proposed method is evaluated on standard databases and the results show a significant accuracy improvement compared to DLBPHS.Keywords: Facial Expression Recognition, Difference Image, Displacement Image, Local Binary Patterns, Support Vector Machine
-
This paper presents a semantic method for aerial image segmentation. Multi-class aerial images are often featured with large intra-class variations and inter-class similarities. Furthermore, shadows, reflections and changes in viewpoint, high and varying altitude and variability of natural scene pose serious problems for simultaneous segmentation. The main purpose of segmentation of aerial images is to make subsequent recognition phase straightforward. Present algorithm combines two challenging tasks of segmentation and classification in a manner that no extra recognition phase is needed. This algorithm is supposed to be part of a system which will be developed to automatically locate the appropriate site for Unmanned Aerial Vehicle (UAV) landing. With this perspective, we focused on segregating natural and man-made areas in aerial images. We compared different classifiers and explored the best set of features for this task in an experimental manner. In addition, a certainty based method has been used for integrating color and texture descriptors in a more efficient way. The experimental results over a dataset comprised of 25 high-resolution images show the overall binary segmentation accuracy rate of 91.34%.Keywords: Aerial Images, Semantic Segmentation, Classification, Local Binary Patterns, Feature Fusion, Artificial Neural Network, Support Vector Machine, Random Forest
نکته
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.