meta-heuristic algorithms
در نشریات گروه فنی و مهندسی-
International Journal of Industrial Engineering and Productional Research, Volume:36 Issue: 2, Jun 2025, PP 170 -184
The Traveling Salesman Problem (TSP) is a well-known problem in optimization and graph theory, where finding the optimal solution has always been of significant interest. Optimal solutions to TSP can help reduce costs and increase efficiency across various fields. Heuristic algorithms are often employed to solve TSP, as they are more efficient than exact methods due to the complexity and large search space of the problem. In this study, meta-heuristic algorithms such as the Genetic Algorithm and the Teaching-Learning Based Optimization (TLBO) algorithm are used to solve the TSP. Additionally, a discrete mutation phase is introduced to the TLBO algorithm to enhance its performance in solving the TSP. The results indicate that, in testing two specific models of the TSP, the modified TLBO algorithm outperforms both the Genetic Algorithm and the standard TLBO algorithm in terms of convergence to the optimal solution and response time.
Keywords: Traveling Salesman Problem, Modified Teaching-Learning Based, Optimization, Meta-Heuristic Algorithms, Graph Theory -
In the field of optimization, metaheuristic algorithms have garnered significant interest. These algorithms, which draw inspiration from natural selection, evolution, and problem-solving strategies, offer an alternative approach to solving complex optimization problems. Unlike conventional software engineering methods, metaheuristics do not rely on derivative calculations in the search space. Instead, they explore solutions by iteratively refining and adapting their search process. The no-free-lunch (NFL) theorem proves that an optimization scheme cannot perform well in dealing with all optimization challenges. Over the last two decades, a plethora of metaheuristic algorithms has emerged, each with its unique characteristics and limitations. In this paper, we propose a novel meta-heuristic algorithm called ISUD (Individuals with Substance Use Disorder) to solving optimization problems by examining the clinical behaviors of individuals compelled to use drugs. We evaluate the effectiveness of ISUD by comparing it with several well-known heuristic algorithms across 44 benchmark functions of varying dimensions. Our results demonstrate that ISUD outperforms these existing methods, providing superior solutions for optimization problems.
Keywords: Optimization, Meta-Heuristic Algorithms, Swarm Intelligence -
امروزه فشارهای اجتماعی و زیست محیطی زیادی برای محدود کردن انتشار گازهای گلخانه ای به ویژه در بخش حمل و نقل وجود دارد. این مقاله مسئله مسیریابی وسیله نقلیه ظرفیت دار دو سطحی با در نظر گرفتن تحویل و برداشت همزمان را بررسی می نماید. یک مدل چند هدفه به منظور حداقل سازی هزینه ها، عوامل مخرب زیست محیطی و نیز تعادل زمان سفر ناوگان حمل ونقل جهت دستیابی به پایداری، توسعه یافته است. برای حل این مسئله، دو الگوریتم فرا ابتکاری شامل NSGA II و MOPSO پیشنهاد گردید. برای ارزیابی عملکرد دو الگوریتم فرا ابتکاری پیشنهادی، 15 نمونه مسئله بطور تصادفی تولید گردید. نتایج حاصل از نمونه مسائل در 8 شاخص شامل میانگین توابع هدف اول تا سوم، تعداد جواب کارا، بیشترین گسترش، فاصله متریک، فاصله از نقطه ایده آل و زمان محاسباتی مورد مقایسه قرار گرفت. نتایج نشان داد که الگوریتم NSGA II در شاخص های تعداد جواب کارا، بیشترین گسترش، فاصله متریک به نتایج بهتری نسبت به الگوریتم MOPSO رسیده است. در حالی که الگوریتم MOPSO در دستیابی به میانگین های توابع هدف اول تا سوم، فاصله از نقطه ایده آل و زمان محاسباتی از الگوریتم NSGA II کاراتر بوده است. در نهایت، الگوریتم MOPSO با استفاده از روش تاپسیس و با کسب وزن مطلوبیت 0.7061 به عنوان بهترین روش حل برگزیده شد. این مقاله می تواند به مدیران کمک کند تا با کاهش هزینه های عملیاتی، کاهش اثرات مخرب زیست محیطی و لزوم توجه به معیارهای اجتماعی به منظور کسب امتیاز رقابتی در سراسر شبکه لجستیکی بهره مند گردند.کلید واژگان: مسیریابی وسیله نقلیه دوسطحی، تحویل و برداشت همزمان، پایداری، الگوریتم های فرا ابتکاریToday, there are many social and environmental pressures to limit the emission of greenhouse gases, especially in the transportation sector. This paper investigates the two-echelon capacitated vehicle routing problem considering the simultaneous pickup and delivery approach. A multi-objective model is developed in order to minimize costs, environmental damage factors, and travel time balance of the transportation fleet to achieve sustainability. To solve this problem, two meta-heuristic algorithms including NSGA II and MOPSO were proposed. To evaluate the performance of the two proposed meta-heuristic algorithms, 15 instance problems were randomly generated. The results of the sample problems were compared in 8 indicators, such as the average of the first to third objective functions, the Number of Pareto Front (NFP), the Maximum Spread Index (MSI), the Spacing Metric (SM), the Mean Ideal Distance (MID), and the CPU run-time (CPU-time) values. The results showed that the NSGA II algorithm has achieved better results than the MOPSO algorithm in the Number of Pareto Front (NFP), the Maximum Spread Index (MSI) and the Spacing Metric (SM). While the MOPSO algorithm has been more efficient than the NSGA II algorithm in achieving the averages of the first to third objective functions, the Mean Ideal Distance (MID) and the CPU run-time (CPU-time). Finally, the MOPSO algorithm has chosen as the best solution method by using the TOPSIS method and obtaining a weight of 0.7061. This article can help managers to benefit by reducing operating costs, reducing harmful environmental effects and the need to pay attention to social criteria in order to gain a competitive advantage throughout the logistics network.Keywords: Two-Echelon Vehicle Routing Problem, Simultaneous Pickup, Delivery, Sustainability, Meta-Heuristic Algorithms
-
پژوهش حاضر به ارائه مدل سه سطحی با اطلاعات ناقص وغیر قطعی زنجیره تامین پرداخته است. اهداف مسئله شامل تعیین بهترین تصمیم هر یک از بازیکنان برای تعیین مقدار سفارش بهینه و کمبود برای تولید کننده و قیمت فروش هر بازیکن با توجه به کمبود، تخفیف و هزینه های نگهداری، خرید و بازاریابی برای دستیابی به حداکثر درآمد، حداقل هزینه ها و در مجموع آن، حداکثر سود ممکن برای کل بازیکنان شرکت کننده در زنجیره است. برای حل مدل از نرم افزار گمز و الگوریتم های فرا ابتکاری استفاده شده است . با توجه به در زمره پیچیدگی سخت بودن مسایل زنجیره تامین حلقه بسته، مسئله پیش رو نیز در زمان معقول برای ابعاد موجود در دنیای واقعی حل شدنی نیست. از این رو، برای حل آن از رویکرد فراابتکاری در قالب الگوریتم های ژنتیک و بهینه سازی ازدحام ذرات و ترکیب این دو الگوریتم استفاده شده است. نتایج نشان می دهد که که الگوریتم ترکیبی ژنتیک و ازدحام ذرات در مقایسه با الگوریتم های ژنتیک و ازدحام ذرات از عملکرد بهتری برخوردار بوده است.
کلید واژگان: زنجیره تامین، الگوریتم های فرا ابتکاری، الگوریتم ژنتیک، الگوریتم ازدحام ذراتThe present study presents a three-tier model with incomplete and uncertain information of supply chain needs, benefits and services. Objectives of the issue include determining the best decision to determine the optimal order amount and shortage for the manufacturer and the selling price of each player according to the shortage, discount and maintenance costs, purchase and marketing to achieve maximum revenue, minimum costs and The sum is the maximum possible profit for all the players participating in the chain. To solve the model, Gamz software and meta-heuristic algorithms have been used and finally, Given the complexity of the complexity of closed-loop supply chain problems, the problem ahead cannot be solved in a reasonable time for real-world dimensions. Therefore, to solve it, the meta-heuristic approach in the form of genetic algorithms and optimization of particle aggregation and the combination of these two algorithms have been used. The results show that the combined algorithm of genetics and particle swarming has a better situation compared to genetic and particle swarming algorithms.
Keywords: Supply Chain, Meta- Heuristic Algorithms, Genetic Algorithm, Particle Swarm Algorithm -
شبکه های اجتماعی عمدتا در قالب نمودارهایی با تعداد زیادی راس و یال در قالب یک ماتریس مجاورت نمایش و تحلیل می شوند. لبه ها روابط بین افراد را نشان می دهند و به عنوان پیوند بین رئوس عمل می کنند. ویژگی های ساختاری هر شبکه با ویژگی های لبه ها و رئوس درون آن تعیین می شود. در این تحقیق که بر روی انواع داده های شبکه های اجتماعی از پایگاه داده دانشگاه استنفورد انجام شد، از روش پیش پردازش با استفاده از الگوریتم استعماری رقابتی برای عملیات انتخاب ویژگی هایی با بالاترین شایستگی (کمترین هزینه) استفاده شد. برای ارزیابی تاثیر انتخاب ویژگی بر خروجی نهایی، آزمایش هایی با و بدون عملیات انتخاب ویژگی با استفاده از الگوریتم های مختلف که معمولا در این زمینه استفاده می شوند، انجام شد. شاخص های معتبر مانند دقت، تشخیص، حساسیت و عمده به طور مستقل بر روی نتایج خروجی با میانگین 10 اجرای برنامه اندازه گیری شدند. مقایسه نتایج بین سناریوهای با و بدون انتخاب ویژگی تاثیر قابل توجهی بر همه شاخص های نتیجه نهایی نشان داد. بسیاری از ویژگی ها در مجموعه داده ها یا استفاده نشده بودند یا حاوی حداقل اطلاعات بودند. حذف نکردن این ویژگی ها نه تنها بار محاسباتی را افزایش داد، بلکه بر دقت نتایج خروجی به دلیل اجرای زمان بر تاثیر گذاشت.
کلید واژگان: پیش بینی لینک، الگوریتم های فرااکتشافی، پیش پردازش داده هاSocial networks are primarily represented and analyzed in the form of graphs with a large number of vertices and edges, structured as an adjacency matrix. The edges indicate relationships between individuals and act as connections between the vertices. The structural characteristics of each network are determined by the features of the edges and vertices within it. In this research, conducted on various types of social network data from the Stanford University database, a preprocessing method was employed using a competitive colonial algorithm for feature selection with the highest merit (lowest cost). To evaluate the impact of feature selection on the final output, experiments were conducted both with and without feature selection operations using various algorithms commonly used in this field. Valid metrics such as accuracy, precision, sensitivity, and recall were independently measured on the output results with an average of 10 program executions. The comparison of results between scenarios with and without feature selection showed a significant impact on all metrics of the final outcome. Many features in the datasets were either unused or contained minimal information. Not removing these features not only increased the computational burden but also affected the accuracy of the output results due to time-consuming execution.
Keywords: Link Prediction, Meta-Heuristic Algorithms, Data Preprocessing -
This study optimizes the multi-commodity routing problem in a constrained network, integrating dynamic warehouse management, diverse vehicle ownership options, and congestion management. The model addresses the efficient routing of goods with limited vehicle and warehouse capacities, enabling the addition or removal of warehouses based on demand fluctuations. It incorporates a hybrid fleet strategy, balancing owned and outsourced vehicles to minimize costs while ensuring flexibility. The model also considers network congestion, optimizing routes and schedules to mitigate delays. This approach provides a comprehensive solution for cost-effective and responsive supply chain logistics. In this research, the complexity of the mathematical model and its multi-objective nature led to the use of the epsilon constraint method and the MOGWO and NSGA II algorithms in the model. Solving the model using the mentioned methods showed that the total costs increased with the improvement of the second objective function. This problem has been due to the use of vehicles with higher speeds and higher prices, and also by reducing the risk of transporting products, the total costs have increased again.
Keywords: Location-Routing, Uncertainty, Fuzzy Programming, M, C, K Model, Meta-Heuristic Algorithms -
This paper presents a method for optimizing the dual-target virtual machine provisioning problem, which is a challenge in cloud data centers. In the cloud environment, it is important to balance the interests of service providers and customers. From the producers’ viewpoint, optimizing energy consumption and reducing costs are essential. From the users’ point of view, it is desirable to achieve an adequate level of quality of service, and network latency is one of the factors that contribute to its reduction. Therefore, optimizing bandwidth usage to reduce network delay is the second important objective considered in this study. To solve this problem, a two-objective method based on a genetic algorithm is presented, which provides near-optimal results in an acceptable time. The evaluations show the superiority of the proposed algorithm in terms of total energy consumption and total traffic in the network compared with methods based on a genetic algorithm, ant colony, greedy FFD algorithm, and randomized deployment method.
Keywords: Cloud Computing, Virtual Machine Placement, Multi Objective Optimization, Meta-Heuristic Algorithms -
مهندسان سازه همیشه به دنبال طراحی سازه هایی بودند که بتوانند عملکردشان را هنگام زلزله پیش بینی کنند. با استفاده از روش طراحی مبتنی برعملکرد می توان سازه ها را مورد بررسی قرارداد تا رفتاری که در برخورد با زلزله مورد انتظار از خود نشان می دهند را مشاهده کرد. امروزه بهینه سازی در طراحی سازه ها از اهمیت زیادی برخوردار می باشد. زیرا میزان هزینه برای اجرای یک سازه که از نظر اقتصادی بصرفه باشد بر اهمیت این موضوع تاثیر می گذارد. در این مطالعه بهینه سازی وزن قاب های مهاربندی همگرا بر اساس روش طراحی مبتنی بر عملکرد مورد سنجش قرار گرفته است. به دلیل آنکه یکی از مرسوم ترین روش های تحلیل برای ارزیابی عملکرد لرزه ای روش تحلیل استاتیکی غیرخطی می باشد در این مطالعه این روش به عنوان مبنای تحلیل به کارگرفته شده است. مباحث بهینه سازی به دو زیرمجموعه تابع هدف و محدودیت ها تقسیم بندی می شود. تابع هدف این پژوهش براساس معیاری از وزن سازه نوشته شده است. قیود مسئله بهینه سازی نیز شامل معیارهای پذیرش برای اعضای کنترل شونده توسط نیرو و کنترل شونده توسط تغییرشکل و سایر قیود طراحی در سطوح عملکردی مورد نظر هستند. به منظور امکان سنجی طراحی بهینه براساس مسئله تعریف شده بهینه سازی وزن دو قاب مهاربندی همگرای فولادی دوبعدی بااستفاده از الگوریتم فراابتکاری مورد بررسی قرارگرفته است. نتایج حاصل از بهینه سازی نشان می دهد که می توان قاب مهاربندی همگرا را براساس روش مبتنی برعملکرد و با استفاده از الگوریتم فراابتکاری طراحی بهینه کرد.کلید واژگان: طراحی براساس عملکرد، قاب های فولادی مهاربندی همگرا، بهینه سازی، الگوریتم های فراابتکاری، تحلیل استاتیکی غیرخطیStructural engineers have always sought to design structures that can predict their performance during earthquakes. By using the performance-based design method, the structures can be examined to observe the behavior they show when dealing with the expected earthquake. Nowadays, optimization is very important in the design of structures. Because the amount of cost to implement a structure that is economical from the point of view affects the importance of this issue. In this study, the weight optimization of convergent bracing frames has been measured based on the performance-based design method. Because one of the most common methods of analysis to evaluate the seismic performance is the non-linear static analysis method, this method has been used as the basis of analysis. In this study, the objective function is considered based on the weight of the structure. The optimization problem considers the acceptance criteria for force-controlled and deformation-controlled members at desired performance levels, as well as geometric constraints. To make the optimal design possible based on the defined problem, optimizing the weight of three- and six-story concentrically braced 2D steel frames have been investigated using EVPS and EWOA algorithms. The results of the optimization show that it is possible to optimize the weight of the concentrically braced frame based on the performance-based method and using the algorithm.Keywords: Performance-Based Design, Convergent Bracing Steel Frames, Optimization, Meta-Heuristic Algorithms, Nonlinear Static Analysis
-
Optimization plays a crucial role in enhancing productivity within the industry. Employing this technique can lead to a reduction in system costs. There exist various efficient methods for optimization, each with its own set of advantages and disadvantages. Meanwhile, meta-heuristic algorithms offer a viable solution for achieving the optimal working point. These algorithms draw inspiration from nature, physical relationships, and other sources. The distinguishing factors between these methods lie in the accuracy of the final optimal solution and the speed of algorithm execution. The superior algorithm provides both precise and rapid optimal solutions. This paper introduces a novel agricultural-inspired algorithm named Elymus Repens Optimization (ERO). This optimization algorithm operates based on the behavioral patterns of Elymus Repens under cultivation conditions. Elymus repens is inclined to move to areas with more suitable conditions. In ERO, exploration and exploitation are carried out through Rhizome Optimization Operator and Stolon Optimization Operators. These two supplementary activities are used to explore the problem space. The potent combination of these operators, as presented in this paper, resolves the challenges encountered in previous research related to speed and accuracy in optimization issues. After the introduction and simulation of ERO, it is compared with popular search algorithms such as Gravitational Search Algorithm (GSA), Grey Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), and Firefly Algorithm (FA). The solution of 23 benchmark functions demonstrates that the proposed algorithm is highly efficient in terms of accuracy and speed.
Keywords: Elymus Repens Optimization, Meta-Heuristic Algorithms, Rhizome Optimization Operator, Stolon Optimization Operator -
International Journal of Optimization in Civil Engineering, Volume:14 Issue: 4, Autumn 2024, PP 609 -628
The multi-material size optimization of transmission tower trusses is carried out in the present study. Three real-size examples are designed, and statically analyzed, and the Black Hole Mechanics Optimization (BHMO) algorithm, a recently developed metaheuristic optimizer methodology, is employed. The BHMO algorithm's innovative search strategy, which draws inspiration from black hole quantum physics, along with a robust mathematical kernel based on the covariance matrix between variables and their associated costs, efficiently converges to global optimum solutions. Besides, three alloys of steel are taken into account in these examples for discrete size variables, each of which is defined in the problem by a weighted coefficient in terms of the elemental weight. The results also indicate that using multiple materials or alloys in addition to diverse cross-sectional sizes leads to the lowest possible cost and the most efficient solution.
Keywords: Transmission Tower Truss, Black Hole Mechanics Optimization, Multi-Material Optimization, Meta-Heuristic Algorithms, Covariance Matrix, 3D Optimization -
Groundwater inflow is a critical subject within the domains of hydrology, hydraulic engineering, hydrogeology, rock engineering, and related disciplines. Tunnels excavated below the groundwater table, in particular, face the inherent risk of groundwater seepage during both the excavation process and subsequent operational phases. Groundwater inflows, often perceived as rare geological hazards, can induce instability in the surrounding rock formations, leading to severe consequences such as injuries, fatalities, and substantial financial expenditures. The primary objective of this research is to explore the application of machine learning techniques to identify the most accurate method of forecasting tunnel water seepage. The prediction of water loss into the tunnel during the forecasting phase employed a tree equation based on gene expression programming (GEP). These results were compared with those obtained from a hybrid model comprising particle swarm optimization (PSO) and artificial neural networks (ANN). The Whale Optimization Algorithm (WOA) was selected and developed during the optimization phase. Upon contrasting the aforementioned methods, the Whale Optimization Algorithm demonstrated superior performance, precisely forecasting the volume of water lost into the tunnel with a correlation coefficient of 0.99. This underscores the effectiveness of advanced optimization techniques in enhancing the accuracy of groundwater inflow predictions and mitigating potential risks associated with tunneling activities.Keywords: Tunnel Seepage, Groundwater, Optimization, Meta-Heuristic Algorithms
-
آمارها نشان از افزایش قابل توجه تعداد بلایای طبیعی دارد. تاثیرات اقتصادی، اجتماعی و زیست محیطی این دسته از حوادث، توجه محققان را نسبت به تصمیمات این حوزه به خود جلب کرده است. با توجه به حادثه خیز بودن ایران و بروز حوادث طبیعی نظیر سیل، زلزله و طوفان و همچنین وجود سابقه جنگ، مدیریت بحران به یکی از کلیدی ترین موضوعات مدیریتی حال حاضر کشور تبدیل شده است بنابراین نیاز به برنامه ریزی لجستیک بشر دوستانه با در نظر گرفتن شرایط واقعی ضروری بنظر می رسد. مهم ترین ویژگی های یک امداد رسانی خوب کاهش زمان ارسال محموله های کمکی و کاهش هزینه های کلی به جهت استفاده هر چه بهتر از منابع مالی موجود می باشد. اما با توجه به شرایط محیط زیستی حال حاضر در جهان و با توجه به رویکرد بهبود مستمر، دیدگاه های محیط زیستی در مسائل لجستیک مورد توجه محققان قرار گرفته است. در این پژوهش، ابتدا یک مدل خطی عدد صحیح مختلط دو هدفه ارائه شده است که تابع هدف اول به کاهش هزینه انتقال کالاهای امدادی و نیز کاهش میزان انتشار گازهای گلخانه ای و تابع هدف دوم به کاهش زمان امدادرسانی می پردازد. عدم قطعیت موجود در مدل نیز از طریق روش آنتروپی حداکثر (ME) در نظر گرفته شده است. در نهایت این مدل با استفاده از روش حل دقیق گمز و نیز الگوریتم ژنتیک چند هدفه (NSGA-II) و الگوریتم بهینه سازی ازدحام ذرات چند هدفه (MOPSO) حل شده است، تحلیل حساسیت بر روی یکی از پارامترهای اصلی مدل انجام گرفته و نیز روش های حل با کمک چندین معیار با هم مقایسه شده اند و با توجه به معیارها، در انتها الگوریتم ژنتیک چندهدفه در اندازه های کوچک و بزرگ بهترین جواب را اتخاذ نمود.کلید واژگان: لجستیک بشر دوستانه، حمل و نقل سبز، مدیریت بحران، روش آنتروپی حداکثر، الگوریتم های فراابتکاریThe statistics show a significant increase in a number of natural disasters. The economic, social, and environmental impacts of these events have attracted the attention of researchers to the decisions of this field. According to our geographical situation and a number of natural disaster (e.g., earthquake, storm and flood and historical wars), crisis management is one of most important topics among researchers. It is worth noting that the complexity and unpredictability are an integral activity of planning and operations during the crisis response phase. Therefore, the need for humanitarian logistics planning seems necessary in real life situations. The most important properties of well relief are to minimize the distribution time and minimize the budget because of increasing the efficiency; however, most recent studies are shown that greenhouse issues can be involved in crisis management. Therefore, this paper study presents a linear two-objective integer model. The first objective function is to minimize the cost of relief supplies and greenhouse gas emissions in a distribution system. Additionally, the second objective function minimizes the relief time. Demand of nodes are uncertain, in which uncertainty in the model is also considered and handled by the ME method. Furthermore, this model is solved using the GAMS software and two well-known multi-objective meta-heuristic algorithms, namely NSGA-II and MOPSO. The sensitivity analysis is performed on one of the main parameters of the model and compared the methods of solving with the help of several metrics. Finally, the best solutions are reported by the NSGA-II in solving small and large-sized problems.Keywords: Humanitarian Logistics, Green Transportation, Crisis Management, Maximum Entropy Method, Meta-Heuristic Algorithms
-
در این مقاله به طراحی بهینه یک پرنده به کمک طراحی سرعت لازمه پرداخته شده است. در این روش طراحی اطلاعات ورودی شامل نوع ترکیب سوخت، جرم بار مفید و حداکثر برد پروازی می باشد و هدف از طراحی، تعیین جرم اولیه و ابعاد اصلی پرنده است. در ابتدای طراحی پیکره بندی پرنده انتخاب می شود و سپس با مشخص شدن ترکیب سوخت، مشخصات اصلی سوخت به عنوان ورودی های اصلی طراحی در گام اول تعیین می شود. با طی شدن مراحل طراحی در انتها و با انجام محاسبات وزنی و هندسی، جرم اولیه پرنده، جرم اولیه مراحل، میزان سوخت و اکسیدایزر طبقات و میزان تراست موتور طبقات مشخص می گردد. سپس برای اطمینان از روش طراحی مد نظر از اجسام پرنده مشابه از نظر نوع سوخت، تعداد طبقات و همچنین طول برد نهایی جهت صحه گذاری استفاده گردیده است. پس از انجام طراحی کلاسیک، بهینه کردن تابع جرم مد نظر قرار گرفته است، جهت بهینه سازی، پارامترهای λ_νi (تراست نسبی اولیه مراحل) ، P_ci (فشار محفظه داخلی موتور طبقات) و P_ei (فشار خروجی نازل موتور طبقات) را با سه روش GA (الگوریتم تکاملی ژنتیک)، ABC (الگوریتم تکاملی کلونی زنبور عسل) و CA (الگوریتم تکاملی فرهنگی) بهینه کرده و نتایج با یکدیگر مقایسه گردیده است. پس از بررسی نتایج، مشخص می شود که کمینه ترین جرم (تابع هدف) و بهینه ترین مقدار مربوط به روش بهینه سازی فرهنگی (CA) می باشد، که با رساندن جسم پرنده به برد نهایی مد نظر، جرم برخاست را کاهش داده است.
کلید واژگان: طراحی سرعت لازمه، طراحی بهینه، الگوریتم های فراابتکاری، بهینه سازی تابع جرمIn this article, the optimal design of a flying object is discussed with the help of designing the required speed. In this design method, the input information includes the type of fuel composition, payload mass, and maximum flight range, and the purpose of the design is to determine the initial mass and main dimensions of the aircraft. At the beginning of the design, the configuration of the bird is selected, and then with the determination of the fuel composition, the main characteristics of the fuel are determined as the main design inputs in the first step. By going through the design stages and by performing weight and geometric calculations, the initial mass of the flying object, the initial mass of the stages, the amount of fuel and oxidizer of the stages and the amount of thrust of the engines are determined. Then, to ensure the design method, similar flying objects in terms of fuel type, number of stages and also the final range have been used for validation. After performing the classical design, optimizing the mass function is considered, for optimization, the parameters λ_νi (relative initial thrust of the stages), P_ci (internal combustion pressure of the engines) and P_ei (exit pressure of the nozzle of the engines) with three GA methods (genetic evolutionary algorithm), ABC (bee colony evolutionary algorithm) and CA (cultural evolutionary algorithm) have been optimized and the results have been compared with each other. After analysis of the results, it is clear that the minimum mass (objective function) and the most optimal value is related to the cultural optimization method (CA), which reduces the initial mass by bringing the flying object to the final range.
Keywords: Required Speed Design, Optimal Design, Meta-Heuristic Algorithms, Mass Function Optimization -
امروزه به خاطر فواید قابل ملاحظه ی اینترنت اشیاء (IoT) در حوزه های مختلف از قبیل خانه های هوشمند، صنایع، خودروها، کشاورزی و... کاربرد آن بسیار گسترش یافته است. با توجه به این مطلب امنیت این شبکه ها روز به روز مورد توجه بیشتری قرار می گیرد. یکی از روش های تامین امنیت در شبکه ها و همینطور شبکه ی اینترنت اشیاء سیستم های تشخیص نفوذ می باشد. سیستم های تشخیص نفوذ سنتی کارایی مناسبی برای استفاده در شبکه ی اینترنت اشیاء ندارند، لذا استفاده از روش های جدید مورد نیاز است یکی از این روش ها سیستم های تشخیص نفوذ مبتنی بر یادگیری ماشین و یادگیری عمیق هستند که در این حوزه مورد توجه قرار گرفته اند. در یادگیری ماشین و یادگیری عمیق شبکه ی عصبی برای تشخیص الگوهای حمله آموزش داده می شوند. پارامترهای مهمی برای تنظیم شبکه ی یادگیری ماشین وجود دارند که انتخاب مقدار مناسب برای این پارامترها تاثیر فراوانی در دقت سیستم دارد. در این پژوهش روشی ارائه شده است که با استفاده از الگوریتم های فراابتکاری نظیر الگوریتم ژنتیک، بهینه سازی ازدحام ذرات، کلونی زنبور عسل مصنوعی و گرگ خاکستری ابرپارامترهای بهینه برای شبکه ی یادگیری عمیق را یافته و سیستم تشخیص نفوذی براساس این ابرپارامترها ایجاد می شود تا تشخیص نفوذ در شبکه ی اینترنت اشیاء انجام دهد. این روش با استفاده از کتابخانه های Tensorflow و keras پیاده سازی شده و روی مجموعه داده های KDDCup99، UNSW-NB15 و Bot-IoT آزمایش شد. نتایج نشان داد که روش پیشنهادی با دقت بالای 99/6% می تواند حملات را تشخیص دهد.کلید واژگان: یادگیری عمیق، سیستم تشخیص نفوذ، بهینه سازی ازدحام ذرات، گرگ خاکستری، کلونی زنبور عسل مصنوعی، الگوریتم ژنتیکToday, due to the considerable benefits of the Internet of Things (IoT) in various fields such as smart homes, industry, cars, agriculture, etc., its application is very widespread. Due to this, the security of these networks is receiving more and more attention. One of the methods of providing security in networks as well as IoT network is intrusion detection systems. Traditional intrusion detection systems are not very efficient for use in the Internet of Things, so the use of new methods is required. One of these methods is intrusion detection systems based on machine learning and deep learning that have been considered in this area. They are trained in machine learning and deep neural network learning to detect attack patterns. There are important parameters for setting up a machine learning network, and choosing the right value for these parameters has a great impact on system accuracy. In this paper, a method is presented that uses meta-heuristic algorithms such as genetic algorithm, particle swarm optimization, artificial bee colony and gray wolf to find the optimal hyperparameters for the deep learning network and the intrusion detection system is created based on these hyperparameters. This method was implemented using the Tensorflow and keras libraries and tested on the KDDCup99, UNSW-NB15 and Bot-IoT datasets. The results showed that the proposed method can detect attacks with a high accuracy of 99%.Keywords: Deep Learning, Inrusion Detection Systems, Internet Of Things, Meta- Heuristic Algorithms, Geray Wolf Optimizer
-
استفاده از الگوریتم های غزال کوهستان و کپک مخاطی برای حل مسئله برنامه ریزی مسیر
یکی از بخش های مهم رباتیک برنامه ریزی مسیر است، به طوری که مطالعه مسیر ربات یکی از موضوعات بسیار مهم تلقی می شود. ربات متحرک باید از موقعیت شروع به سمت موقعیت هدف حرکت کند، درحالی که در یک محیط حاوی موانع از موانع موجود اجتناب کند. مسیر باید بر اساس برخی از معیارها مانند کوتاهی طول مسیر، همواری مسیر و امنیت مسیر بهینه باشد. در این مطالعه، هدف اصلی حل مسئله برنامه ریزی مسیر برای یک ربات به صورت شبکه، ایستا و شناخته شده است که معیارهای کوتاه ترین فاصله، امنیت مسیر و همواری مسیر را برآورده می سازد. مسئله برنامه ریزی مسیر یک مسئله NP-کامل می باشد و برای این مسئله روش ها و الگوریتم های مختلفی پیشنهاد شده است که شامل روش های دقیق و فراابتکاری است. برای حل این مسئله با محاسباتی کمتر از الگوریتم های فراابتکاری می توان استفاده کرد که در این مطالعه از الگوریتم ژنتیک، الگوریتم غزال کوهستان و الگوریتم کپک مخاطی استفاده شده است. در پیاده سازی ها علاوه بر استفاده از عملگرهای خود الگوریتم ها از سه عملگر ساده سازی، بازبینی و جایگزینی استفاده شده است و همچنین یک تابع ارزیابی جدید و برای تولید جمعیت اولیه سه عملگر ترمیم گره، ترمیم پاره خط و بهبود گره برای ایجاد مسیرهای تاحدامکان شدنی ارائه شده است. نتایج نشان می دهند که این الگوریتم ها دارای کارایی بالایی هستند و همچنین از پیچیدگی محاسباتی کمتری برای حل این مسئله برخوردارند.
کلید واژگان: الگوریتم های فراابتکاری، برنامه ریزی مسیر، الگوریتم ژنتیک، بهینه ساز غزال کوهستان، الگوریتم کپک مخاطیUsing Mountain Gazelle and Slime Mould Algorithms to Solvethe Path Planning ProblemPath planning is one of the important parts of robotics, so studying the path of the robot is considered one of the most important subjects. The mobile robot must move from the start position to the goal position, while avoiding obstacles in an obstacle environment. The route should be optimal based on some criteria such as shortness of the path, smoothness of the path and security of the path. In this study, the main goal is to solve the path planning problem for a robot in the form of a discrete, static and known, which meet the criteria of shortest distance, path security and path smoothness. Path planning problem is a NP-complete problem and various methods and algorithms have been proposed, which include exact and meta-heuristic algorithms. Meta-heuristic algorithms can be used to solve this problem with less computational load. In this study genetic algorithm, mountain gazelle algorithm, and Slime mould algorithm are used. In implementations, in addition to the operators of the algorithms themselves, three simplification, revision and replacement operators have been used, as well as a new evaluation function has been presented and after generating the initial population of three operators node repair, line segment repair and node improvement to create paths up to feasible path has been used. The results show that these algorithms have high efficiency and also have less computational complexity to solve this problem
Keywords: Meta-Heuristic Algorithms, Path Planning, Genetic Algorithm, Mountain Gazelle Optimizer, Slime Mould Algorithm -
The problem of allocation of financial resources in projects is one of the most important problems of mathematical optimization. Incorrect allocation of financial resources can lead to project failure, increased costs, and reduced profitability. The importance of this issue has led to the modeling of a financial resource allocation problem for sustainable projects under uncertainty in this article. A fuzzy programming method was used to control model parameters and GSSA, GA, and SSA algorithms were used to solve the model. In the mathematical model, the goal was to optimize the objective function consisting of predicted return, investment risk, and project sustainability. Mathematical calculation results showed that meta-heuristic algorithms have high efficiency in achieving optimal solutions in a short time. so that the average time to solve them was less than 10 seconds. Also, the calculation results showed that increasing the uncertainty rate leads to increasing the value of the objective function and creating a distance from the optimal point. This is due to increasing costs and decreasing profits in sustainable projects. Finally, usage the TOPSIS method, the ranking of solving algorithms was done, and the GSSA algorithm was the most efficient algorithm among other algorithms with a desirability weight of 0.846.
Keywords: resource allocation, sustainable projects, fuzzy programming, meta-heuristic algorithms -
In any economy, it is essential to monitor the rate of population change closely. Governments employ various strategies and programs to regulate population growth since different population growth rates have distinct economic consequences. This paper reveals a global trend of reduced desire to have children, with variations across countries. The paper aims to predict the population growth rate in England by employing Artificial Neural Networks (ANN) in combination with various meta-heuristic algorithms, including the Sparrow Search Algorithm (SSA). The selection of SSA and other algorithms is based on factors such as accuracy and computational efficiency. A set of 18 economic indicators serves as input variables, and a Genetic Algorithm (GA) is used for feature selection. The data used for analysis spans the most recent ten years and is presented on a monthly basis. The results indicate that SSA exhibits the lowest prediction errors for the population growth rate among the applied algorithms in this paper. The primary contribution of this study lies in the application of hybrid algorithms that combine SSA-ANN with other algorithms, such as LA. The paper also emphasizes the inclusion of influential and impactful indices as input variables to enhance prediction accuracy.Keywords: Artificial Neural Network, meta-heuristic algorithms, Sparrow Search Algorithm, Mayfly Algorithm, Lichtenberg Algorithm, Population growth rate
-
This paper discusses the modeling of a location-routing-inventory problem for perishable products. The model presented in this paper includes a three-echelon supply chain of suppliers, distribution centers, and retailers. Supplier selection, assigning suppliers to distribution centers and retailers, vehicle routing and economic order quantity, lead time, and confidence inventory are the main decisions of the problem. These decisions are aimed at optimizing the total supply chain network costs. The nonlinear model presented in this article has been solved using two algorithms, WOA and ALO, in 12 sample problems. The results show that the solving speed of these algorithms and the high quality of the obtained answers are very high compared to the exact method. So, the maximum percentage of relative difference between the obtained results is less than 1%. The sensitivity analysis on the perishability rate also shows the increase in total costs in line with the increase in this parameter. By examining the outputs of 12 sample problems in large size, the WOA showed its efficiency compared to the ALO in terms of two indicators of average total costs and CPU time.Keywords: Location-Routing-Inventory, Perishable Products, Distribution-Routing Network, Meta-Heuristic Algorithms
-
Medical image registration plays an important role in many clinical applications, including the detection and diagnosis of diseases, planning of therapy, guidance of interventions. Multimodal medical image registration is the process of overlapping two or more images taken from the same scene by different modalities and different sensors. Intensity-based methods are widely used in multimodal medical image registration, these techniques register different modality images that have the same content by optimal transformation. The estimation of the optimal transformation requires the optimization of a similarity metric between the images. Recently, various optimization algorithms have been presented that the selection of appropriate optimization algorithms is very important in determining the optimal transformation parameter. The Social Spider Optimization (SSO) algorithm is one of the meta-heuristic methods that prevents premature convergence. In this paper, medical image registration technique is suggested based on the SSO algorithm. The Mutual Information (MI), Normalization of Mutual Information (NMI), and Sum of Squared Differences (SSD) are used separately as cost function (objective function) and the performance of each of these functions is checked in multimodal medical image registration. The simulation results on Brain Web data set affirm the suggested method outperforms classical registration methods in terms of convergence rate, execution time.
Keywords: Image Registration, Medical Image Processing, Optimization, Meta-Heuristic Algorithms, Social Spider Optimization -
International Journal of Research in Industrial Engineering, Volume:12 Issue: 3, Summer 2023, PP 273 -286In this paper, the modeling of a closed-loop supply chain problem is discussed concerning economic and environmental aspects. The considered supply chain simultaneously makes strategic and tactical decisions, such as locating potential facilities, optimal allocation of product flow, and determining the optimal level of discount. Since the presented model is an NP-Hard model, MOPSO and SPEA II algorithms have been used to solve the problem. For this purpose, a priority-based encoding is presented, and the Pareto front resulting from solving different problems is compared. The results show that the MOPSO algorithm has obtained the most significant number of Pareto solutions in the large size. In contrast, the SPEA algorithm has included more Pareto solutions in the small and medium sizes. This is despite the fact that in different sizes, the MOPSO algorithm has the lowest calculation time among all algorithms. Also, according to the results obtained from the TOPSIS method, it was observed that the MOPSO algorithm in small and medium sizes and the SPEA2 algorithm in larger sizes have better performance than other proposed algorithms.Keywords: network design, Closed-loop supply chain, economic, environmental aspects, meta-heuristic algorithms
- نتایج بر اساس تاریخ انتشار مرتب شدهاند.
- کلیدواژه مورد نظر شما تنها در فیلد کلیدواژگان مقالات جستجو شدهاست. به منظور حذف نتایج غیر مرتبط، جستجو تنها در مقالات مجلاتی انجام شده که با مجله ماخذ هم موضوع هستند.
- در صورتی که میخواهید جستجو را در همه موضوعات و با شرایط دیگر تکرار کنید به صفحه جستجوی پیشرفته مجلات مراجعه کنید.